Cancer cachexia is a multifactorial syndrome characterized by a progressive loss of body weight occurring in about 80% of cancer patients, frequently representing the leading cause of death. Dietary intervention is emerging as a promising therapeutic strategy to counteract cancer-induced wasting. Serine is the second most-consumed amino acid (AA) by cancer cells and has emerged to be strictly necessary to preserve skeletal muscle structure and functionality.
View Article and Find Full Text PDFIn the early stages of carcinogenesis, the transformed cells become "invisible" to the immune system. From this moment on, the evolution of the tumor depends essentially on the genotype of the primitive cancer cells and their subsequent genetic drift. The role of the immune system in blocking tumor progression from the earliest stages is largely underestimated because by the time tumors are clinically detectable, the immune system has already completely failed its task.
View Article and Find Full Text PDFCancer progression is supported by the cross-talk between tumor cells and the surrounding stroma. In this context, senescent cells in the tumor microenvironment contribute to the development of a pro-inflammatory milieu and the acquisition of aggressive traits by cancer cells. Anticancer treatments induce cellular senescence (therapy-induced senescence, TIS) in both tumor and non-cancerous cells, contributing to many detrimental side effects of therapies.
View Article and Find Full Text PDF5-Fluorouracil (5-FU) is a key component of chemotherapy for colorectal cancer (CRC). 5-FU efficacy is established by intracellular levels of folate cofactors and DNA damage repair strategies. However, drug resistance still represents a major challenge.
View Article and Find Full Text PDFPurpose: The impact of tea constituents on the insulin-signaling pathway as well as their antidiabetic activity are still debated questions. Previous studies suggested that some tea components act as Protein Tyrosine Phosphatase 1B (PTP1B) inhibitors. However, their nature and mechanism of action remain to be clarified.
View Article and Find Full Text PDFMetastatic melanoma is characterized by poor prognosis and a low free-survival rate. Thanks to their high plasticity, melanoma cells are able to migrate exploiting different cell motility strategies, such as the rounded/amoeboid-type motility and the elongated/mesenchymal-type motility. In particular, the amoeboid motility strongly contributes to the dissemination of highly invasive melanoma cells and no treatment targeting this process is currently available for clinical application.
View Article and Find Full Text PDFCancer-associated fibroblasts (CAFs) are one of the main components of the stromal compartment in the tumor microenvironment (TME) and the crosstalk between CAFs and cancer cells is essential for tumor progression and aggressiveness. Cancer cells mediate an activation process, converting normal fibroblasts into CAFs, that are characterized by modified expression of many proteins and increased production and release of microvesicles (MVs), extracellular vesicles generated by outwards budding from the cell membrane. Recent evidence underlined that the uptake of CAF-derived MVs changes the overall protein content of tumor cells.
View Article and Find Full Text PDFBackground: The PreImplantation Factor (PIF)-a peptide secreted by viable embryos-exerts autotrophic protective effects, promotes endometrial receptivity and controls trophoblast invasion. Synthetic PIF (sPIF) has both immune-protective and regenerative properties, and reduces oxidative stress and protein misfolding. PIF is detected by immunohistochemistry (IHC) in hyperplastic endometriotic lesions and advanced uterine cancer.
View Article and Find Full Text PDFNeoplastic tissues are composed not only by tumor cells but also by several non-transformed stromal cells, such as cancer-associated fibroblasts, endothelial and immune cells, that actively participate to tumor progression. Starting from the very beginning of carcinogenesis, tumor cells, through the release of paracrine soluble factors and vesicles, i.e.
View Article and Find Full Text PDFChemoresistance is the primary cause of chemotherapy failure. Compelling evidence shows that micro RNAs (miRNAs) contribute to reprogram cancer cells toward a resistant phenotype. We investigate the role of miRNAs in the response to acute treatment with 5-FU in colon cancer-resistant cells.
View Article and Find Full Text PDFTumor resistance to apoptosis is one the main causes of anticancer treatment failure. Previous studies showed that LMW-PTP overexpression enhances resistance of cancer cells to traditional anticancer drugs. Today, the role of LMW-PTP in inducing resistance to apoptosis in melanoma cells remains to be elucidated.
View Article and Find Full Text PDFOriginally identified as a low molecular weight acid phosphatase, LMW-PTP is actually a protein tyrosine phosphatase that acts on many phosphotyrosine-containing cellular proteins that are primarily involved in signal transduction. Differences in sequence, structure, and substrate recognition as well as in subcellular localization in different organisms enable LMW-PTP to exert many different functions. In fact, during evolution, the LMW-PTP structure adapted to perform different catalytic actions depending on the organism type.
View Article and Find Full Text PDFTumor progression toward malignancy often requires a metabolic rewiring of cancer cells to meet changes in metabolic demand to forefront nutrient and oxygen withdrawal, together with strong anabolic requests to match high proliferation rate. Tumor microenvironment highly contributes to metabolic rewiring of cancer cells, fostering complete nutrient exploitation, favoring OXPHOS of lipids and glutamine at the expense of glycolysis and enhancing exchanges via extracellular microvesicles or exosomes of proteins, lipids and small RNAs among tumor and stromal cells. Noteworthy, the same molecular drivers of metabolic reprogramming within tumor and stroma are also able to elicit motility, survival and self-renewal on cancer cells, thereby sustaining successful escaping strategies to circumvent the hostile hypoxic, acidic and inflammatory environment.
View Article and Find Full Text PDFDespite marked tumor shrinkage after 5-FU treatment, the frequency of colon cancer relapse indicates that a fraction of tumor cells survives treatment causing tumor recurrence. The majority of cancer cells divert metabolites into anabolic pathways through Warburg behavior giving an advantage in terms of tumor growth. Here, we report that treatment of colon cancer cell with 5-FU selects for cells with mesenchymal stem-like properties that undergo a metabolic reprogramming resulting in addiction to OXPHOS to meet energy demands.
View Article and Find Full Text PDFFibroblasts are the most abundant cells in connective tissue and, with fibrillar extracellular matrix, form the structural scaffolding of organs. In solid tumors, interaction with cancer cells induces fibroblasts transdifferentiation into an activated form, which become a fundamental part of the tumor stroma. Within tumor microenvironment stromal and cancer cells engage a crosstalk that is mediated by soluble factors, cellcell contacts and extracellular vesicles trafficlking.
View Article and Find Full Text PDFMorin is a natural polyphenol, originally isolated from members of the Moraceae family that can be extracted from leaves, fruits, stems and branches of numerous plants. Several evidence have demonstrated that Morin could have a beneficial effect on several human diseases. In fact, Morin exerts antioxidant, antidiabetic, anti-inflammatory, antitumoral, antihypertensive, antibacterial, hypouricemic, and neuroprotective effects, by modulating the activity of many enzymes.
View Article and Find Full Text PDFIn solid tumors, neoplastic cells grow in contact with the so-called tumor microenvironment. The interaction between tumor cells and the microenvironment causes reciprocal metabolic reprogramming and favorable conditions for tumor growth and metastatic spread. To obtain an experimental model resembling the in vivo conditions of the succinate dehydrogenase B subunit (SDHB)-mutated paragangliomas (PGLs), we evaluated the effects of SDHB silencing on metabolism and proliferation in the human neuroblastoma cell line (SK-N-AS), cultured alone or in association with human fibroblasts.
View Article and Find Full Text PDFResults of several epidemiological studies have indicated that diabetes mellitus will become a global epidemic in the next decades, being more than 400 million the human subjects in the world affected by this disease in the 2030. Most of these subjects will be affected by type 2 diabetes mellitus (T2DM) whose diffusion is mainly related to excessive caloric upload, sedentary life and obesity. Typically, the treatment for T2DM is diet, weight control, physical activity or hypoglycaemic and/or lipid-lowering drugs.
View Article and Find Full Text PDFProstate cancer is no longer viewed mostly as a disease of abnormally proliferating epithelial cells, but rather as a disease affecting the complex interactions between the cells of the prostate epithelial compartment and the surrounding stromal compartment in which they live. Indeed, the microenvironment in which tumor cells evolve towards an aggressive phenotype is highly heterogeneous, as it is composed of different cell populations such as endothelial cells, fibroblasts, macrophages, and lymphocytes, either resident or trans-differentiated by bone marrow-derived mesenchymal stem cells recruited at the tumor site. Cancer-associated fibroblasts, the most abundant population within this microenvironment, exert a mandatory role in prostate cancer progression as they metabolically sustain cancer cell survival and growth, recruit inflammatory and immune cells, and promote cancer cells stemness and epithelial mesenchymal transition, thereby favoring metastatic dissemination of aggressive cancers.
View Article and Find Full Text PDFCell Commun Signal
October 2013
Solid tumors are composed of both cancer cells and various types of accessory cells, mainly fibroblasts, that collectively compose the so called tumor-microenvironment. Cancer-associated fibroblasts have been described to actively participate in cancer progression by establishing a cytokine-mediated as well as metabolic crosstalk with cancer cells. In the present paper we show that activated human fibroblasts are able to boost tumor cells proliferation and that this effect is greatly dependent on stromal carbonic anhydrase IX (CA IX) activity.
View Article and Find Full Text PDFExtracellular acidification, a mandatory feature of several malignancies, has been mainly correlated with metabolic reprogramming of tumor cells toward Warburg metabolism, as well as to the expression of carbonic anydrases or proton pumps by malignant tumor cells. We report herein that for aggressive prostate carcinoma, acknowledged to be reprogrammed toward an anabolic phenotype and to upload lactate to drive proliferation, extracellular acidification is mainly mediated by stromal cells engaged in a molecular cross-talk circuitry with cancer cells. Indeed, cancer-associated fibroblasts, upon their activation by cancer delivered soluble factors, rapidly express carbonic anhydrase IX (CA IX).
View Article and Find Full Text PDFBackground: Type-2 diabetes is a worldwidely diffuse disease characterized by insulin resistance that arises from alterations of receptor and/or post-receptor events of insulin signalling. Studies performed with PTP1B-deficent mice demonstrated that PTP1B is the main negative regulator of insulin signalling. Inhibition or down regulation of this enzyme causes enhanced insulin sensitivity.
View Article and Find Full Text PDFCancer-associated fibroblasts (CAF) engage in tumor progression by promoting the ability of cancer cells to undergo epithelial-mesenchymal transition (EMT), and also by enhancing stem cells traits and metastatic dissemination. Here we show that the reciprocal interplay between CAFs and prostate cancer cells goes beyond the engagement of EMT to include mutual metabolic reprogramming. Gene expression analysis of CAFs cultured ex vivo or human prostate fibroblasts obtained from benign prostate hyperplasia revealed that CAFs undergo Warburg metabolism and mitochondrial oxidative stress.
View Article and Find Full Text PDFCancer Metastasis Rev
June 2012
Several recent papers have now provided compelling experimental evidence that the progression of tumours towards a malignant phenotype does not depend exclusively on the cell-autonomous properties of cancer cells themselves but is also deeply influenced by tumour stroma reactivity, thereby undergoing a strict environmental control. Tumour microenvironmental elements include structural components such as the extracellular matrix or hypoxia as well as stromal cells, either resident cells or recruited from circulating precursors, as macrophages and other inflammatory cells, endothelial cells and cancer-associated fibroblasts (CAFs). All these elements synergistically play a specific role in cancer progression.
View Article and Find Full Text PDF