Publications by authors named "Paolo Bortolotti"

The transition from planar (2D) to three-dimensional (3D) magnetic nanostructures represents a significant advancement in both fundamental research and practical applications, offering vast potential for next-generation technologies like ultrahigh-density storage, memory, logic, and neuromorphic computing. Despite being a relatively new field, the emergence of 3D nanomagnetism presents numerous opportunities for innovation, prompting the creation of a comprehensive roadmap by leading international researchers. This roadmap aims to facilitate collaboration and interdisciplinary dialogue to address challenges in materials science, physics, engineering, and computing.

View Article and Find Full Text PDF

The emergence of exceptional points (EPs) in the parameter space of a non-hermitian (2D) eigenvalue problem has long been interest in mathematical physics, however, only in the last decade entered the scope of experiments. In coupled systems, EPs give rise to unique physical phenomena, and enable the development of highly sensitive sensors. Here, we demonstrate at room temperature the emergence of EPs in coupled spintronic nanoscale oscillators and exploit the system's non-hermiticity.

View Article and Find Full Text PDF

Spin-waves in antiferromagnets hold the prospects for the development of faster, less power-hungry electronics and promising physics based on spin superfluids and coherent magnon condensates. For both these perspectives, addressing electrically coherent antiferromagnetic spin-waves is of importance, a prerequisite that has been so far elusive, because, unlike ferromagnets, antiferromagnets couple weakly to radiofrequency fields. Here, we demonstrate the detection of ultra-fast nonreciprocal spin-waves in the dipolar exchange regime of a canted antiferromagnet using both inductive and spintronic transducers.

View Article and Find Full Text PDF

Spintronic nano-synapses and nano-neurons perform neural network operations with high accuracy thanks to their rich, reproducible and controllable magnetization dynamics. These dynamical nanodevices could transform artificial intelligence hardware, provided they implement state-of-the-art deep neural networks. However, there is today no scalable way to connect them in multilayers.

View Article and Find Full Text PDF

Parsonage-Turner Syndrome or neuralgic amyotrophy is a peripheral neuropathy typically characterized by an abrupt onset of pain, followed by progressive neurological deficits (e.g. weakness, atrophy, occasionally sensory abnormalities) that involve the upper limb, mainly the shoulder, encompassing an extensive spectrum of clinical manifestations, somehow difficult to recognize.

View Article and Find Full Text PDF

The brain naturally binds events from different sources in unique concepts. It is hypothesized that this process occurs through the transient mutual synchronization of neurons located in different regions of the brain when the stimulus is presented. This mechanism of 'binding through synchronization' can be directly implemented in neural networks composed of coupled oscillators.

View Article and Find Full Text PDF

Background: Lower limb ulcers not responding to standard treatments after 8 weeks are defined as chronic wounds, and they are a significant medical problem. Blue light (410-430 nm) proved to be effective in treating wounds, but there is a lack of data on chronic wounds in clinical practice. The aim of the study was to determine if blue light photobiomodulation with EmoLED (Emoled Srl, Sesto Fiorentino, Florence, Italy) medical device in addition to standard of care is more effective compared to standard of care alone in promoting re-epithelialization of chronic wounds of lower limbs in 10 weeks.

View Article and Find Full Text PDF

Multiferroics offer an elegant means to implement voltage control and on the fly reconfigurability in microscopic, nanoscaled systems based on ferromagnetic materials. These properties are particularly interesting for the field of magnonics, where spin waves are used to perform advanced logical or analogue functions. Recently, the emergence of nanomagnonics is expected to eventually lead to the large-scale integration of magnonic devices.

View Article and Find Full Text PDF

In the course of the COVID-19 pandemic, it has become clear that primary healthcare systems play a critical role in clinical care, such as patient screening, triage, physical and psychological support and also in promoting good community advice and awareness in coordination with secondary healthcare and preventive care. Because of the role of social and environmental factors in COVID-19 transmission and burden of disease, it is essential to ensure that there is adequate coordination of population-based health services and public health interventions. The COVID-19 pandemic has shown the primary and community healthcare (P&CHC) system's weaknesses worldwide.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on the frequency spectrum of spin torque nano-oscillators, emphasizing the complexity introduced by thermal and flicker noise, which affects long-term stability.
  • Experimental measurements were conducted on spin torque vortex oscillators, analyzing phase noise and spectrum while varying measurement time duration.
  • The research combines theoretical modeling with experimental data to enhance understanding of noise impacts on oscillator stability and provides insights for improving performance in practical applications.
View Article and Find Full Text PDF

Hip Osteoarthritis (OA) causes pain and disability. Here we evaluate abobotulinumtoxinA (Dysport) (AboBoNT-A) injections versus placebo as a novel treatment option to improve hip range of motion, pain and quality of life. This prospective randomized double-blind multicenter study (EudraCT # 2012-004890-25) recruited 46 outpatients with hip OA who were randomized 2:1 to the Treatment Group (TG; 31 subjects), or the Placebo Group (PG; 15 subjects).

View Article and Find Full Text PDF

In recent years, artificial neural networks have become the flagship algorithm of artificial intelligence. In these systems, neuron activation functions are static, and computing is achieved through standard arithmetic operations. By contrast, a prominent branch of neuroinspired computing embraces the dynamical nature of the brain and proposes to endow each component of a neural network with dynamical functionality, such as oscillations, and to rely on emergent physical phenomena, such as synchronization, for solving complex problems with small networks.

View Article and Find Full Text PDF

A magnetic material combining low losses and large perpendicular magnetic anisotropy (PMA) is still a missing brick in the magnonic and spintronic fields. We report here on the growth of ultrathin Bismuth doped YFeO (BiYIG) films on GdGaO (GGG) and substituted GGG (sGGG) (111) oriented substrates. A fine tuning of the PMA is obtained using both epitaxial strain and growth-induced anisotropies.

View Article and Find Full Text PDF
Article Synopsis
  • Neurons in the brain function as nonlinear oscillators for processing information, inspiring advances in neuromorphic computing, which aims to replicate this behavior using nanoscale oscillators.
  • Creating a chip with 10 oscillators in a small area requires each oscillator to be under one micrometer, but nanoscale devices face challenges like noise and instability that hinder reliable data processing.
  • A successful experiment demonstrated that a nanoscale spintronic oscillator can recognize spoken digits with accuracy comparable to advanced neural networks, suggesting a new path for efficient, low-power on-chip computations.
View Article and Find Full Text PDF

The self-synchronization of spin torque oscillators is investigated experimentally by re-injecting its radiofrequency (rf) current after a certain delay time. We demonstrate that the integrated power and spectral linewidth are improved for optimal delays. Moreover by varying the phase difference between the emitted power and the re-injected one, we find a clear oscillatory dependence on the phase difference with a 2π periodicity of the frequency of the oscillator as well as its power and linewidth.

View Article and Find Full Text PDF