Publications by authors named "Paolo Bazzigaluppi"

Spreading depolarizations (SDs) are an enigmatic and ubiquitous co-morbidity of neural dysfunction. SDs are propagating waves of local field depolarization and increased extracellular potassium. They increase the metabolic demand on brain tissue, resulting in changes in tissue blood flow, and are associated with adverse neurological consequences including stroke, epilepsy, neurotrauma, and migraine.

View Article and Find Full Text PDF

Notwithstanding recanalization treatments in the acute stage of stroke, many survivors suffer long-term impairments. Physical rehabilitation is the only widely available strategy for chronic-stage recovery, but its optimization is hindered by limited understanding of its effects on brain structure and function. Using micro-ultrasound, behavioral testing, and electrophysiology, we investigated the impact of skilled reaching rehabilitation on cerebral hemodynamics, motor function, and neuronal activity in a rat model of focal ischemic stroke.

View Article and Find Full Text PDF

Mid-life hypertension is a major risk factor for developing dementia later in life. While anti-hypertensive drugs restore normotension, dementia risk remains above baseline suggesting that brain damage sustained during transient hypertension is irreversible. The current study characterized a rat model of transient hypertension with an extended period of normotensive recovery: F344 rats were treated with L-NG-Nitroarginine methyl ester (L-NAME) for 1 month to induce hypertension then allowed up to 4 months of recovery.

View Article and Find Full Text PDF

A normally functioning nervous system requires normal extracellular potassium ion concentration ([K]o). Throughout the nervous system, several processes, including those of an astrocytic nature, are involved in [K]o regulation. In this study we investigated the effect of astrocytic photostimulation on [K]o.

View Article and Find Full Text PDF

Mild traumatic brain injury (mTBI), the most common type of brain trauma, frequently leads to chronic cognitive and neurobehavioral deficits. Intervening effectively is impeded by our poor understanding of its pathophysiological sequelae. To elucidate the long-term neurovascular sequelae of mTBI, we combined optogenetics, two-photon fluorescence microscopy, and intracortical electrophysiological recordings in mice to selectively stimulate peri-contusional neurons weeks following repeated closed-head injury and probe individual vessel's function and local neuronal reactivity.

View Article and Find Full Text PDF

Ischemia is one of the most common causes of acquired brain injury. Central to its noxious sequelae are spreading depolarizations (SDs), waves of persistent depolarizations which start at the location of the flow obstruction and expand outwards leading to excitotoxic damage. The majority of acute stage of stroke studies to date have focused on the phenomenology of SDs and their association with brain damage.

View Article and Find Full Text PDF

Raised extracellular potassium ion (K) concentration is associated with several disorders including migraine, stroke, neurotrauma and epilepsy. K spatial buffering is a well-known mechanism for extracellular K regulation/distribution. Astrocytic gap junction-mediated buffering is a controversial candidate for K spatial buffering.

View Article and Find Full Text PDF

Failure of Alzheimer's disease clinical trials to improve or stabilize cognition has led to the need for a better understanding of the driving forces behind cognitive decline in the presence of active disease processes. To dissect contributions of individual pathologies to cognitive function, we used the TgF344-AD rat model, which recapitulates the salient hallmarks of Alzheimer's disease pathology observed in patient populations (amyloid, tau inclusions, frank neuronal loss, and cognitive deficits). scyllo-Inositol treatment attenuated amyloid-β peptide in disease-bearing TgF344-AD rats, which rescued pattern separation in the novel object recognition task and executive function in the reversal learning phase of the Barnes maze.

View Article and Find Full Text PDF

Transient hypertension is a risk factor for Alzheimer disease (AD), but the effects of this interaction on brain vasculature are understudied. Addressing vascular pathology is a promising avenue to potentiate the efficacy of treatments for AD. We used arterial spin labeling magnetic resonance imaging to longitudinally assess brain vascular function and immunohistopathology to examine cerebrovascular remodeling and amyloid load.

View Article and Find Full Text PDF

The rapid growth in the use of optogenetics for neuroscience applications is largely driven by two important advantages: highly specific cellular targeting through genetic manipulations; and precise temporal control of neuronal activation via temporal modulation of the optical stimulation. The difference between the most commonly used stimulation modalities, namely diffused (i.e.

View Article and Find Full Text PDF

Background and Purpose- Recent evidence suggests great potential of metabolically targeted interventions for treating neurological disorders. We investigated the use of the endogenous ketone body β-hydroxybutyrate (BHB) as an alternate metabolic substrate for the brain in the acute phase of ischemia because postischemic hyperglycemia and brain glucose metabolism elevation compromise functional recovery. Methods- We delivered BHB (or vehicle) 1 hour after ischemic insult induced by cortical microinjection of endothelin-1 in sensorimotor cortex of rats.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) research has focused on moderate to severe injuries as their outcomes are significantly worse than those of a mild TBI (mTBI). However, recent epidemiological evidence has indicated that a series of even mild TBIs greatly increases the risk of neurodegenerative and psychiatric disorders. Neuropathological studies of repeated TBI have identified changes in neuronal ionic concentrations, axonal injury, and cytoskeletal damage as important determinants of later life neurological and mood compromise; yet, there is a paucity of data on the contribution of neurogliovascular dysfunction to the progression of repeated TBI and alterations of brain function in the intervening period.

View Article and Find Full Text PDF

Although epidemiological evidence suggests significant sex and gender-based differences in stroke risk and recovery, females have been widely under-represented in preclinical stroke research. The neurovascular sequelae of brain ischemia in females, in particular, are largely uncertain. We set out to address this gap by a multimodal study of neurovascular recovery from endothelin-1 model of cortical focal-stroke in sham vs.

View Article and Find Full Text PDF

The inferior olive (IO) is a nucleus located in the brainstem and it is part of the olivo-cerebellar loop. This circuit plays a fundamental role in generation and acquisition of coherent motor patterns and it relies on synchronous activation of groups of Purkinje cells (PC) in the cerebellar cortex. IO neurons integrate their intrinsic oscillatory activity with excitatory inputs coming from the somatosensory system and inhibitory feedback coming from the cerebellar nuclei.

View Article and Find Full Text PDF

Epilepsy afflicts up to 1.6% of the population and the mechanisms underlying the appearance of seizures are still not understood. In past years, many efforts have been spent trying to understand the mechanisms underlying the excessive and synchronous firing of neurons.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is pathologically characterized by amyloid-β peptide (Aβ) accumulation, neurofibrillary tangle formation, and neurodegeneration. Preclinical studies on neuronal impairments associated with progressive amyloidosis have demonstrated some Aβ-dependent neuronal dysfunction including modulation of gamma-aminobutyric acid-ergic signaling. The present work focuses on the early stage of disease progression and uses TgF344-AD rats that recapitulate a broad repertoire of AD-like pathologies to investigate the neuronal network functioning using simultaneous intracranial recordings from the hippocampus (HPC) and the medial prefrontal cortex (mPFC), followed by pathological analyses of gamma-aminobutyric acid (GABA ) receptor subunits α1 α5, and δ, and glutamic acid decarboxylases (GAD65 and GAD67).

View Article and Find Full Text PDF

Purpose: Stroke is the leading cause of adult disability worldwide. The absence of more effective interventions in the chronic stage-that most patients stand to benefit from-reflects uncertainty surrounding mechanisms that govern recovery. The present work investigated the effects of a novel treatment (selective cyclooxygenase-1, COX-1, inhibition) in a model of focal ischemia.

View Article and Find Full Text PDF

Alzheimer's disease (AD), pathologically characterized by amyloid-β peptide (Aβ) accumulation, neurofibrillary tangle formation, and neurodegeneration, is thought to involve early-onset neurovascular abnormalities. Hitherto studies on AD-associated neurovascular injury have used animal models that exhibit only a subset of AD-like pathologies and demonstrated some Aβ-dependent vascular dysfunction and destabilization of neuronal network. The present work focuses on the early stage of disease progression and uses TgF344-AD rats that recapitulate a broader repertoire of AD-like pathologies to investigate the cerebrovascular and neuronal network functioning using in situ two-photon fluorescence microscopy and laminar array recordings of local field potentials, followed by pathological analyses of vascular wall morphology, tau hyperphosphorylation, and amyloid plaques.

View Article and Find Full Text PDF

Extracellular potassium concentration, [K], is a major determinant of neuronal excitability. In the healthy brain, [K] levels are tightly controlled. During seizures, [K] increases up to 15mM and is thought to cause seizures due to its depolarizing effect.

View Article and Find Full Text PDF

Brain plasticity following focal cerebral ischaemia has been observed in both stroke survivors and in preclinical models of stroke. Endogenous neurovascular adaptation is at present incompletely understood yet its potentiation may improve long-term functional outcome. We employed longitudinal MRI, intracranial array electrophysiology, Montoya Staircase testing, and immunofluorescence to examine function of brain vessels, neurons, and glia in addition to forelimb skilled reaching during the subacute stage of ischemic injury progression.

View Article and Find Full Text PDF

Ischaemic stroke is the leading cause of adult disability worldwide. Effective rehabilitation is hindered by uncertainty surrounding the underlying mechanisms that govern long-term ischaemic injury progression. Despite its potential as a sensitive non-invasive in vivo marker of brain function that may aid in the development of new treatments, blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) has found limited application in the clinical research on chronic stage stroke progression.

View Article and Find Full Text PDF

The neurons in the inferior olive express subthreshold oscillations in their membrane potential. This oscillatory activity is known to drive synchronous activity in the cerebellar cortex and plays a role in motor learning and motor timing. In the past years, it was commonly thought that olivary neurons belonged to a unique population of oscillating units and that oscillation properties were exclusively dependent on network settings and/or synaptic inputs.

View Article and Find Full Text PDF

Potassium homeostasis is fundamental for the physiological functioning of the brain. Increased [K(+)] in the extracellular fluid has a major impact on neuronal physiology and can lead to ictal events. Compromised regulation of extracellular [K(+)] is involved in generation of seizures in animal models and potentially also in humans.

View Article and Find Full Text PDF

The inferior olivary nucleus provides one of the two main inputs to the cerebellum: the so-called climbing fibers. Activation of climbing fibers is generally believed to be related to timing of motor commands and/or motor learning. Climbing fiber spikes lead to large all-or-none action potentials in cerebellar Purkinje cells, overriding any other ongoing activity and silencing these cells for a brief period of time afterwards.

View Article and Find Full Text PDF

The inferior olive (IO) forms one of the major gateways for information that travels to the cerebellar cortex. Olivary neurons process sensory and motor signals that are subsequently relayed to Purkinje cells. The intrinsic subthreshold membrane potential oscillations of the olivary neurons are thought to be important for gating this flow of information.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: