Introduction: The marine environment is extremely complex and exerts strong evolutionary pressure often leading to the appearance of microbial strains with new metabolic competencies. Microorganisms in marine ecosystems are still largely unknown and should be explored and conserved for biodiversity preservation, possible ecosystem restoring, and other applications. Biodiversity conservation should become a basic ecological strategy of particular significance in relation to global change.
View Article and Find Full Text PDFIn this study, 15 Lulworthiales strains isolated from the marine tunicate collected in the central Tyrrhenian Sea were characterized using a polyphasic approach (morpho-physiological, molecular, and phylogenetic analyses). Based on multi-locus phylogenetic inference and morphological characters, a new genus, , and two new species, and (Lulworthiales), were proposed. Multi-locus phylogenetic analyses using the nuclear ribosomal regions of DNA (nrITS1-nr5.
View Article and Find Full Text PDFBackground: Marine fungi are an important repository of bioactive molecules with great potential in different technological fields, the annual number of new compounds isolated from marine fungi is impressive and the general trend indicates that it is still on the rise. In this context, the antifungal and antimicrobial activity of the marine strain Mariannaea humicola IG100 was evaluated and two active terpenoids were isolated and characterized.
Methods: Preliminary screening of activity of marine strain IG100 was carried out by agar plug diffusion methods against fungal (Penicillium griseofulvum TSF04) and bacterial (Bacillus pumilus KB66 and Escherichia coli JM109) strains.
Twenty-eight fungal strains have been isolated from different natural marine substrates and plate screened for their production of chitinolytic activity. The two apparent best producers, IG127 and IG119, were screened in shaken cultures in media containing 1% colloidal chitin, 1% yeast nitrogen base and 38‰ NaCl, for their ability to produce chitinolytic enzymes under halophilic conditions. In addition, they were tested for optimal growth conditions with respect to pH, salinity and temperature.
View Article and Find Full Text PDFBackground: Shewanella baltica KB30 was isolated from seawater collected in Kandalaksha Bay, White Sea (Russia). This strain is known for its ability to grow on a pool of different substrates, including carbohydrates, carboxylic and amino acids, and lipids. However, no data are available on its metabolic efficiency in relation to the use of different carbon sources typologies.
View Article and Find Full Text PDFThe Antarctic fungus Lecanicillium muscarium CCFEE-5003 was preliminary cultivated in shaken flasks to check its chitinase production on rough shrimp and crab wastes. Production on shrimp shells was much higher than that on crab shells (104.6±9.
View Article and Find Full Text PDFBackground: Marine environments are the widest fonts of biodiversity representing a resource of both unexploited or unknown microorganisms and new substances having potential applications. Among microbial products, exopolysaccharides (EPS) have many physiological functions and practical applications. Since EPS production by many bacteria is too scarce for practical use and only few species are known for their high levels of production, the search of new high EPS producers is of paramount importance.
View Article and Find Full Text PDFBackground: The Antarctic fungus Lecanicillium muscarium CCFEE 5003 is one of the most powerful chitinolytic organisms. It can produce high level of chitinolytic enzymes in a wide range of temperatures (5-30°C). Chitinolytic enzymes have lot of applications but their industrial production is still rather limited and no cold-active enzymes are produced.
View Article and Find Full Text PDFBackground: Vanillin is one of the most important aromatic flavour compounds used in the food and cosmetic industries. Natural vanillin is extracted from vanilla beans and is relatively expensive. Moreover, the consumer demand for natural vanillin highly exceeds the amount of vanillin extracted by plant sources.
View Article and Find Full Text PDF