This review article aims to address common research questions in hexapod robotics. How can we build intelligent autonomous hexapod robots that can exploit their biomechanics, morphology, and computational systems, to achieve autonomy, adaptability, and energy efficiency comparable to small living creatures, such as insects? Are insects good models for building such intelligent hexapod robots because they are the only animals with six legs? This review article is divided into three main sections to address these questions, as well as to assist roboticists in identifying relevant and future directions in the field of hexapod robotics over the next decade. After an introduction in section (1), the sections will respectively cover the following three key areas: (2) biomechanics focused on the design of smart legs; (3) locomotion control; and (4) high-level cognition control.
View Article and Find Full Text PDFWe propose a methodology based on reservoir computing for mapping local proprioceptive information acquired at the level of the leg joints of a simulated quadruped robot into exteroceptive and global information, including both the ground reaction forces at the level of the different legs and information about the type of terrain traversed by the robot. Both dynamic estimation and terrain classification can be achieved concurrently with the same reservoir computing structure, which serves as a soft sensor device. Simulation results are presented together with preliminary experiments on a real quadruped robot.
View Article and Find Full Text PDFObjective: This retrospective and exploratory study tested the accuracy of artificial neural networks (ANNs) at detecting Alzheimer's disease patients with dementia (ADD) based on input variables extracted from resting-state electroencephalogram (rsEEG), structural magnetic resonance imaging (sMRI) or both.
Methods: For the classification exercise, the ANNs had two architectures that included stacked (autoencoding) hidden layers recreating input data in the output. The classification was based on LORETA source estimates from rsEEG activity recorded with 10-20 montage system (19 electrodes) and standard sMRI variables in 89 ADD and 45 healthy control participants taken from a national database.
Synchronization of chaotic dynamics can be pursued by means of different coupling strategies. Definitely, master-slave coupling represents one of the most adopted solutions, even if it presents some limitations due to the coupling term's selection strategy. In this paper, we investigate the role of different structures of coupling terms on the synchronization properties of master-slave chaotic system configurations.
View Article and Find Full Text PDFDespite substantial advances in many different fields of neurorobotics in general, and biomimetic robots in particular, a key challenge is the integration of concepts: to collate and combine research on disparate and conceptually disjunct research areas in the neurosciences and engineering sciences. We claim that the development of suitable robotic integration platforms is of particular relevance to make such integration of concepts work in practice. Here, we provide an example for a hexapod robotic integration platform for autonomous locomotion.
View Article and Find Full Text PDFIn nature, insects show impressive adaptation and learning capabilities. The proposed computational model takes inspiration from specific structures of the insect brain: after proposing key hypotheses on the direct involvement of the mushroom bodies (MBs) and on their neural organization, we developed a new architecture for motor learning to be applied in insect-like walking robots. The proposed model is a nonlinear control system based on spiking neurons.
View Article and Find Full Text PDFClassification and sequence learning are relevant capabilities used by living beings to extract complex information from the environment for behavioral control. The insect world is full of examples where the presentation time of specific stimuli shapes the behavioral response. On the basis of previously developed neural models, inspired by Drosophila melanogaster, a new architecture for classification and sequence learning is here presented under the perspective of the Neural Reuse theory.
View Article and Find Full Text PDFLearning and reproducing temporal sequences is a fundamental ability used by living beings to adapt behaviour repertoire to environmental constraints. This paper is focused on the description of a model based on spiking neurons, able to learn and autonomously generate a sequence of events. The neural architecture is inspired by the insect Mushroom Bodies (MBs) that are a crucial centre for multimodal sensory integration and behaviour modulation.
View Article and Find Full Text PDFDespite their small brains, insects show advanced capabilities in learning and task solving. Flies, honeybees and ants are becoming a reference point in neuroscience and a main source of inspiration for autonomous robot design issues and control algorithms. In particular, honeybees demonstrate to be able to autonomously abstract complex associations and apply them in tasks involving different sensory modalities within the insect brain.
View Article and Find Full Text PDFINSECTS CARRY A PAIR OF ANTENNAE ON THEIR HEAD: multimodal sensory organs that serve a wide range of sensory-guided behaviors. During locomotion, antennae are involved in near-range orientation, for example in detecting, localizing, probing, and negotiating obstacles. Here we present a bionic, active tactile sensing system inspired by insect antennae.
View Article and Find Full Text PDFInsects are becoming a reference point in Neuroscience for the study of biological aspects at the basis of cognitive processes. These animals have much simpler brains with respect to higher animals, showing, at the same time, impressive capability to adaptively react and take decisions in front of complex environmental situations. In this paper we propose a neural model inspired by the insect olfactory system, with particular attention to the fruit fly Drosophila melanogaster.
View Article and Find Full Text PDFNonlinear Biomed Phys
April 2011
Background: Recent studies on the medical treatment of Parkinson's disease (PD) led to the introduction of the so called Deep Brain Stimulation (DBS) technique. This particular therapy allows to contrast actively the pathological activity of various Deep Brain structures, responsible for the well known PD symptoms. This technique, frequently joined to dopaminergic drugs administration, replaces the surgical interventions implemented to contrast the activity of specific brain nuclei, called Basal Ganglia (BG).
View Article and Find Full Text PDFIn this paper a new general purpose perceptual control architecture, based on nonlinear neural lattices, is presented and applied to solve robot navigation tasks. Insects show the ability to react to certain stimuli with simple reflexes, using direct sensory-motor pathways, which can be considered as basic behaviors, inherited and pre-wired. Relevant brain centres, known as Mushroom Bodies (MB) and Central Complex (CX) were recently identified in insects: though their functional details are not yet fully understood, it is known that they provide secondary pathways allowing the emergence of cognitive behaviors.
View Article and Find Full Text PDFIEEE Trans Neural Netw
February 2009
In this paper, we introduce a network of spiking neurons devoted to navigation control. Three different examples, dealing with stimuli of increasing complexity, are investigated. In the first one, obstacle avoidance in a simulated robot is achieved through a network of spiking neurons.
View Article and Find Full Text PDFIn this paper a new technique for action-oriented perception in robots is presented. The paper starts from exploiting the successful implementation of the basic idea that perceptual states can be embedded into chaotic attractors whose dynamical evolution can be associated with sensorial stimuli. In this way, it can be possible to encode, into the chaotic dynamics, environment-dependent patterns.
View Article and Find Full Text PDFThe control of the legs of a walking hexapod is a complex problem as the legs have three joints each, resulting in a total of 18 degrees of freedom. We addressed this problem using a decentralized architecture termed Walknet, which consists of peripheral pattern generators being coordinated through influences acting mainly between neighbouring legs. Both, the coordinating influences and the local control modules (each acting only on one leg), are biologically inspired.
View Article and Find Full Text PDFThis paper presents an innovative wormlike robot controlled by cellular neural networks (CNNs) and made of an ionic polymer-metal composite (IPMC) self-actuated skeleton. The IPMC actuators, from which it is made of, are new materials that behave similarly to biological muscles. The idea that inspired the work is the possibility of using IPMCs to design autonomous moving structures.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
August 2006
In this paper a topic regarding the synchronization of chaotic systems is dealt with: the case of separation and synchronization of many chaotic signals generated by different chaotic circuits and combined together is examined. In particular, an observer based strategy has been adopted, and an approach for the simultaneous stabilization of many Luenberger observers has been investigated to face the problem of separation and synchronization. The design strategy is based on linear matrix inequalities (LMIs).
View Article and Find Full Text PDFThe implementation of circuits with complex dynamics is a very challenging problem. In this paper we present a new chaotic circuit based on the dynamical equations introduced in IEEE Trans. Circuits Syst.
View Article and Find Full Text PDFIEEE Trans Syst Man Cybern B Cybern
August 2004
In this paper, dynamical systems made up of locally coupled nonlinear units are used to control the locomotion of bio-inspired robots and, in particular, a simulation of an insect-like hexapod robot. These controllers are inspired by the biological paradigm of central pattern generators and are responsible for generating a locomotion gait. A general structure, which is able to change the locomotion gait according to environmental conditions, is introduced.
View Article and Find Full Text PDFCentral Pattern Generators (CPGs) are a suitable paradigm to solve the problem of locomotion control in walking robots. CPGs are able to generate feed-forward signals to achieve a proper coordination among the robot legs. In literature they are often modelled as networks of coupled nonlinear systems.
View Article and Find Full Text PDFIn this paper a new method for chaos control is proposed, consisting of an unsupervised neural network, namely a Motor Map. In particular a feedback entrainment scheme is adopted: a chaotic system with a given parameter set generates the reference trajectory for another chaotic system with different parameters to be controlled: the Motor Map is required to provide the appropriate time-varying gain value for the feedback signal. The state of the controlled system is considered as input to the Motor Map.
View Article and Find Full Text PDF