Microalgae have emerged as promising photosynthetic microorganisms for biofabricating advanced tissue constructs, with improved oxygenation and reduced reactive oxygen species (ROS) production. However, their use in the engineering of human tissues has been limited due to their intrinsic growth requirements, which are not compatible with human cells. In this study, we first formulated alginate-gelatin (AlgGel) hydrogels with increasing densities of.
View Article and Find Full Text PDFThe cure kinetics of various epoxy resin mixtures, comprising a bisphenol epoxy, two epoxy modifiers, and two hardening agents derived from cardanol technology, were investigated through differential scanning calorimetry (DSC). The development of these mixtures aimed to achieve epoxy materials with a substantial bio-content up to 50% for potential automotive applications, aligning with the 2019 European Regulation on climate neutrality and CO emission. The Friedman isoconversional method was employed to determine key kinetic parameters, such as activation energy and pre-exponential factor, providing insights into the cross-linking process and the Kamal-Sourour model was used to describe and predict the kinetics of the chemical reactions.
View Article and Find Full Text PDFReflectance spectroscopy has emerged as a powerful analytical technique in the field of dermatology, offering a non-invasive strategy to assess several cutaneous properties and skin response to topical products. By analyzing reflected light across different wavelengths, reflectance spectroscopy allows the quantification of cutaneous parameters, such as erythema index and melanin content. Moreover, this analytical technique enables the monitoring of any changes in skin physiology facilitating the assessment of long-term effects of topical products as well as predicting cutaneous diseases.
View Article and Find Full Text PDFPEGylation is currently used for the synthesis of stealth liposomes and to enhance the pharmacokinetic and biopharmaceutical properties of payloads. PEGylated dendron phospholipids can decrease the detachment of polyethylene glycol (PEG) from the liposomal surface owing to an increased hydrophobic anchoring effect on the phospholipid bilayer of liposomes and thus generating super stealth liposomes that are suitable for the systemic delivery of anticancer drugs. Herein, doxorubicin hydrochloride-loaded super stealth liposomes were studied for the treatment of breast cancer lung metastasis in an animal model.
View Article and Find Full Text PDFThe use of Atmospheric Pressure Plasma Jet (APPJ) technology for surface treatment of carbon fabrics is investigated to estimate the increase in the fracture toughness of carbon-fiber composite materials. Nitrogen and a nitrogen-hydrogen gas mixture were used to size the carbon fabrics by preliminarily optimizing the process parameters. The effects of the APPJ on the carbon fabrics were investigated by using optical and chemical characterizations.
View Article and Find Full Text PDFWound healing is a challenging clinical problem and efficient wound management is essential to prevent infection. This is best done by utilizing biocompatible materials in order to complete the healing in a rapid manner, with functional and esthetic outcomes. In this context, the zein protein fulfills the criteria of the ideal wound dressing which include non-toxicity and non-inflammatory stimulation.
View Article and Find Full Text PDFDeformable nanovesicles have a crucial role in topical drug delivery through the skin, due to their capability to pass intact the stratum corneum and epidermis (SCE) and significantly increase the efficacy and accumulation of payloads in the deeper layers of the skin. Namely, lipid-based ultradeformable nanovesicles are versatile and load bioactive molecules with different physicochemical properties. For this reason, this study aims to make oleic acid based nanovesicles (oleosomes) for the codelivery of icariin and sodium naproxen and increase their permeation through the skin.
View Article and Find Full Text PDFCerebrovascular impairment represents one of the main causes of death worldwide with a mortality rate of 5.5 million per year. The disability of 50% of surviving patients has high social impacts and costs in long period treatment for national healthcare systems.
View Article and Find Full Text PDFThe study assessed the tensile, flexural, and impact properties of composite materials reinforced with flax fibers, employing three distinct resin types. The composite laminates were fabricated using three commercial resins: a conventional epoxy resin, an epoxy resin with a 31% weight concentration of bio-renewable content, and a recyclable methyl methacrylate infusion resin. This aims to assess if there exists a commercially available alternative to the traditional epoxy resin that can reduce the overall carbon footprint of composite materials.
View Article and Find Full Text PDFIn this work, the strains measured with optic fibers and recorded during tensile tests performed on carbon/epoxy composite specimens were compared to those recorded by strain gauges and by Digital Image Correlation (DIC). The work aims at investigating the sensitivity of embedded and glued optic sensors for structural health monitoring applications in comparison with strain gauges and the full field strain map of the DIC. Acrylate, polyimide optic fibers, and three strain gauge sizes are considered to compare the three techniques.
View Article and Find Full Text PDFAs many natural origin antioxidants, resveratrol is characterized by non-suitable physicochemical properties for its topical application. To allow its benefits to manifest on human skin, resveratrol has been entrapped within liquid crystal nanocarriers (LCNs) made up of glyceryl monooleate, a penetration enhancer, and DSPE-PEG 750. The nanosystems have been more deeply characterized by using dynamic light scattering and Turbiscan Lab Expert optical analyzer, and they have been tested in vitro on NCTC 2544.
View Article and Find Full Text PDFThe fatigue response of additively manufactured (AM) specimens is mainly driven by manufacturing defects, like pores and lack of fusion defects, which are mainly responsible for the large variability of fatigue data in the S-N plot. The analysis of the results of AM tests can be therefore complex: for example, the influence of a specific factor, e.g.
View Article and Find Full Text PDFIn recent years, bioactive compounds have been the focus of much interest in scientific research, due to their low toxicity and extraordinary properties. However, they possess poor solubility, low chemical stability, and unsustainable bioavailability. New drug delivery systems, and among them solid lipid nanoparticles (SLNs), could minimize these drawbacks.
View Article and Find Full Text PDFDespite the efforts and advances done in the last few decades, cancer still remains one of the main leading causes of death worldwide. Nanomedicine and in particular extracellular vesicles are one of the most potent tools to improve the effectiveness of anticancer therapies. In these attempts, the aim of this work is to realize a hybrid nanosystem through the fusion between the M1 macrophages-derived extracellular vesicles (EVs-M1) and thermoresponsive liposomes, in order to obtain a drug delivery system able to exploit the intrinsic tumor targeting capability of immune cells reflected on EVs and thermoresponsiveness of synthetic nanovesicles.
View Article and Find Full Text PDFChimeric Antigen Receptor (CAR)-modified T lymphocytes represent one of the most innovative and promising approaches to treating hematologic malignancies. CAR-T cell therapy is currently being used for the treatment of relapsed/refractory (r/r) B-cell malignancies including Acute Lymphoblastic Leukemia, Large B-Cell Lymphoma, Follicular Lymphoma, Multiple Myeloma and Mantle Cell Lymphoma. Despite the unprecedented clinical success, one of the major issues of the approved CAR-T cell therapy - tisagenlecleucel, axicabtagene, lisocabtagene, idecabtagene, ciltacabtagene and brexucabtagene - is the uncertainty about its persistence which in turn could lead to weak or no response to therapy with malignancy recurrence.
View Article and Find Full Text PDFIn recent years, interest in sustainability has significantly increased in many industrial sectors. Sustainability can be achieved with both lightweight design and eco-friendly manufacturing processes. For example, concerns on the use of thermoset composite materials, with a lightweight design and a high specific strength, have arisen, since thermoset resins are not fully recyclable and are mainly petrol based.
View Article and Find Full Text PDFPurpose: Vitamin E (VitE) may be classified in "the first line of defense" against the formation of reactive oxygen species. Its inclusion in nanoemulsions (NEs) is a promising alternative to increase its bioavailability. The aim of this study was to compare O/W NEs including VitE based on Almond or Neem oil, showing themselves antioxidant properties.
View Article and Find Full Text PDFJoint diseases are one of the most common causes of morbidity and disability worldwide. The main diseases that affect joint cartilage are osteoarthritis and rheumatoid arthritis, which require chronic treatment focused on symptomatic relief. Conventional drugs administered through systemic or intra-articular routes have low accumulation and/or retention in articular cartilage, causing dose-limiting toxicities and reduced efficacy.
View Article and Find Full Text PDFBicalutamide (BCL) is a nonsteroidal antiandrogen drug that represents an alternative to castration in the treatment of prostate cancer, due to its relatively long half-life and tolerable side effects. However, it possesses a very low water solubility that can affect its oral bioavailability. In this work, we developed inclusion complexes of BCL with the highly soluble hydroxypropyl-β-cyclodextrin (HP-β-CyD) and sulfobutylether-β-cyclodextrin (SBE-β-CyD) to increase the water solubility and anticancer activity of BCL.
View Article and Find Full Text PDFPharmaceuticals (Basel)
September 2022
Idebenone (IDE) is a powerful antioxidant that is potentially active towards cerebral diseases, but its low water solubility and fast first pass metabolism reduce its accumulation in the brain, making it ineffective. In this work, we developed cyclodextrin-based chitosan nanospheres (CS NPs) as potential carriers for nose-to-brain targeting of IDE. Sulfobutylether-β-cyclodextrin (SBE-β-CD) was used as a polyanion for chitosan (CS) and as a complexing agent for IDE, permitting its encapsulation into nanospheres (NPs) produced in an aqueous solution.
View Article and Find Full Text PDFHydrogels have been extensively investigated to identify innovative formulations that can fulfill all the necessary purposes to improve local vaginal therapy through the mucosa. Herein, we propose in situ-forming lyotropic liquid crystals (LLCs) derived from a cheap and GRAS (generally recognized as safe) ingredient as an intravaginal delivery system. The system consists of a precursor solution loaded with sertaconazole nitrate as a model drug, which is able to easily swell in a stable three-dimensional structure by absorbing simulated vaginal fluid.
View Article and Find Full Text PDFThe topical administration of a drug compound remains the first choice for the treatment of many local skin ailments. Many skin diseases can be treated by applying the active formulation directly to the skin, but unfortunately some drugs are unable to overcome the stratum corneum and exert their pharmacological action. An example is thymoquinone, a naturally derived drug obtained from Nigella sativa L.
View Article and Find Full Text PDFFor many years, corneal transplantation has been the first-choice treatment for irreversible damage affecting the anterior part of the eye. However, the low number of cornea donors and cases of graft rejection highlighted the need to replace donor corneas with new biomaterials. Tissue engineering plays a fundamental role in achieving this goal through challenging research into a construct that must reflect all the properties of the cornea that are essential to ensure correct vision.
View Article and Find Full Text PDF