Publications by authors named "Paola Vermeer"

Extracellular vesicle (EV) secretion is an important, though not fully understood, intercellular communication process. Lipid metabolism has been shown to regulate EV activity, though the impact of specific lipid classes is unclear. Through analysis of small EVs (sEVs), we observe aberrant increases in sEV release within genetic models of cholesterol biosynthesis disorders, where cellular cholesterol is diminished.

View Article and Find Full Text PDF

The exponential growth of the cancer neuroscience field has shown that the host's immune, vascular, and nervous systems communicate with and influence each other in the tumor microenvironment, dictating the cancer malignant phenotype. Unraveling the nervous system's contributions toward this phenotype brings us closer to cancer cures. In this review, we summarize the peripheral nervous system's contributions to cancer.

View Article and Find Full Text PDF

Cancer neuroscience is a rapidly growing multidisciplinary field that conceptualizes tumors as tissues fully integrated into the nervous system. Recognizing the complexity and challenges in this field is of fundamental importance to achieving the goal of translational impact for cancer patients. Our commentary highlights key scientific priorities, optimal training settings, and roadblocks to translating scientific findings to the clinic in this emerging field, aiming to formulate a transformative and cohesive path forward.

View Article and Find Full Text PDF

Cancer patients often experience changes in mental health, prompting an exploration into whether nerves infiltrating tumors contribute to these alterations by impacting brain functions. Using a mouse model for head and neck cancer and neuronal tracing, we show that tumor-infiltrating nerves connect to distinct brain areas. The activation of this neuronal circuitry altered behaviors (decreased nest-building, increased latency to eat a cookie, and reduced wheel running).

View Article and Find Full Text PDF

Nociceptor neurons impact tumor immunity. Removing nociceptor neurons reduced myeloid-derived suppressor cell (MDSCs) tumor infiltration in mouse models of head and neck carcinoma and melanoma. Carcinoma-released small extracellular vesicles (sEVs) attract nociceptive nerves to tumors.

View Article and Find Full Text PDF

Cancer neuroscience is an emerging field of cancer biology focused on defining the interactions and relationships between the nervous system, developing malignancies, and their environments. Our previous work demonstrates that small extracellular vesicles (sEVs) released by head and neck squamous cell carcinomas (HNSCCs) recruit loco-regional nerves to the tumor. sEVs contain a diverse collection of biological cargo, including microRNAs (miRNAs).

View Article and Find Full Text PDF

The field of cancer neuroscience has begun to define the contributions of nerves to cancer initiation and progression; here, we highlight the future directions of basic and translational cancer neuroscience for malignancies arising outside of the central nervous system.

View Article and Find Full Text PDF

Cancer patients often experience changes in mental health, prompting an exploration into whether nerves infiltrating tumors contribute to these alterations by impacting brain functions. Using a male mouse model for head and neck cancer, we utilized neuronal tracing techniques and show that tumor-infiltrating nerves indeed connect to distinct brain areas via the ipsilateral trigeminal ganglion. The activation of this neuronal circuitry led to behavioral alterations represented by decreased nest-building, increased latency to eat a cookie, and reduced wheel running.

View Article and Find Full Text PDF

Severe pain is often experienced by patients with head and neck cancer and is associated with a poor prognosis. Despite its frequency and severity, current treatments fail to adequately control cancer-associated pain because of our lack of mechanistic understanding. Although recent works have shed some light of the biology underlying pain in HPV-negative oral cancers, the mechanisms mediating pain in HPV+ cancers remain unknown.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores how tumor-associated nerves (TANs) interact with cancer and the immune system, particularly focusing on their role in resistance to anti-PD-1 therapy in cutaneous squamous cell carcinoma (cSCC).
  • Researchers found that cancer cells can damage TANs and myelin sheaths, leading to resistance against treatment.
  • The presence of high rates of peri-neural invasion and immune-suppressive activity was associated with non-responders to anti-PD-1 therapy, indicating potential therapeutic targets for improving outcomes in similar cancers.
View Article and Find Full Text PDF

The molecular and functional contributions of intratumoral nerves to disease remain largely unknown. We localized synaptic markers within tumors suggesting that these nerves form functional connections. Consistent with this, electrophysiological analysis shows that malignancies harbor significantly higher electrical activity than benign disease or normal tissues.

View Article and Find Full Text PDF

Solid tumours are innervated by nerve fibres that arise from the autonomic and sensory peripheral nervous systems. Whether the neo-innervation of tumours by pain-initiating sensory neurons affects cancer immunosurveillance remains unclear. Here we show that melanoma cells interact with nociceptor neurons, leading to increases in their neurite outgrowth, responsiveness to noxious ligands and neuropeptide release.

View Article and Find Full Text PDF

Persistent fatigue is a debilitating side effect that impacts a significant proportion of cancer survivors for which there is not yet an FDA-approved treatment. While certainly a multi-factorial problem, persistent fatigue could be due, in part, to associations learned during treatment. Therefore, we sought to investigate the role of associative learning in the persistence of fatigue using a preclinical model of cancer survivorship.

View Article and Find Full Text PDF

Background: Chemoradiotherapy is a standard treatment for HNSCC. Blockade of the PD-1/L1-2 interaction may represent a target to overcome immune escape during this treatment.

Methods: Utilizing a HNSCC mEERL C57BL/6 mouse model, we evaluated a PD-1 blockade alone or in combination with cisplatin-based chemoradiotherapy.

View Article and Find Full Text PDF

The identification of nerves in the tumor microenvironment has ushered in a new area of research in cancer biology. Numerous studies demonstrate the presence of various types of peripheral nerves (sympathetic, parasympathetic, sensory) within the tumor microenvironment; moreover, an increased density of nerves in the tumor microenvironment correlates with worse prognosis. In this review, we address the current understanding of nerve-mediated alterations of the tumor microenvironment and how they impact disease through a variety of processes, including direct nerve-cancer cell communication, alteration of the infiltrative immune population, and alteration of stromal components.

View Article and Find Full Text PDF

Dense tumor innervation is associated with enhanced cancer progression and poor prognosis. We observed innervation in breast, prostate, pancreatic, lung, liver, ovarian, and colon cancers. Defining innervation in high-grade serous ovarian carcinoma (HGSOC) was a focus since sensory innervation was observed whereas the normal tissue contains predominantly sympathetic input.

View Article and Find Full Text PDF

Background: Pain is one of the first presenting symptoms in patients with head and neck cancer, who often develop chronic and debilitating pain as the disease progresses. Pain is also an important prognostic marker for survival. Unfortunately, patients rarely receive effective pain treatment due to our limited knowledge of the mechanisms underlying head and neck cancer pain (HNCP).

View Article and Find Full Text PDF

Fatigue is a common and debilitating symptom of cancer with few effective interventions. Cancer-related fatigue (CRF) is often associated with increases in inflammatory cytokines, however inflammation may not be requisite for this symptom, suggesting other biological mediators also play a role. Because tumors are highly metabolically active and can amplify their energetic toll via effects on distant organs, we sought to determine whether CRF could be explained by metabolic competition exacted by the tumor.

View Article and Find Full Text PDF

The expression of indoleamine 2,3 dioxygenase (IDO) by tumors can contribute to immunotolerance, and IDO induced by inflammation can also increase risk for the development of behavioral alterations. Thus, this study was initiated to determine whether IDO inhibition, intended to facilitate tumor clearance in response to treatment, attenuates behavioral alterations associated with tumor growth and treatment. We used a murine model of human papilloma virus-related head and neck cancer.

View Article and Find Full Text PDF

The naïve view of tumors as isolated islands of rogue cells has given way to a deeper understanding of cancer as being closer to a foreign organ. This "organ" contains immunologic, vascular, and neural connections to its host that provide not only mechanisms for disease progression but also opportunities for therapeutic intervention. The presence of nerves within tumor tissues has long been appreciated.

View Article and Find Full Text PDF

Objective: Recently, our laboratory identified sensory innervation within head and neck squamous cell carcinomas (HNSCCs) and subsequently defined a mechanism whereby HNSCCs promote their own innervation via the release of exosomes that stimulate neurite outgrowth. Interestingly, we noted that exosomes from human papillomavirus (HPV)-positive cell lines were more effective at promoting neurite outgrowth than those from HPV-negative cell lines. As nearly all cervical tumors are HPV-positive, we hypothesized that these findings would extend to cervical cancer.

View Article and Find Full Text PDF

Tumor cell metabolism differs from that of normal cells, conferring tumors with metabolic advantages but affording opportunities for therapeutic intervention. Accordingly, metabolism-targeting therapies have shown promise. However, drugs targeting singular metabolic pathways display limited efficacy, in part due to the tumor's ability to compensate by using other metabolic pathways to meet energy and growth demands.

View Article and Find Full Text PDF
Article Synopsis
  • * The researchers believe that tumors can develop nerves through a process called axonogenesis, and they tested this with PC12 cells, human tumor samples, and cancer models in mice.
  • * They found that tumors release exosomes that promote nerve growth, and when exosome release is blocked, tumor innervation decreases, indicating that exosomes containing a molecule called EphrinB1 enhance nerve development in tumors.
View Article and Find Full Text PDF

The incidence of human papillomavirus-associated head and neck squamous cell carcinoma (HPV[ + ] HNSCC) is rapidly increasing. Although clinical management of primary HPV( + ) HNSCC is relatively successful, disease progression, including recurrence and metastasis, is often fatal. Moreover, patients with progressive disease face limited treatment options and significant treatment-associated morbidity.

View Article and Find Full Text PDF

Fatigue is the most common symptom of cancer at diagnosis, yet causes and effective treatments remain elusive. As tumors can be highly inflammatory, it is generally accepted that inflammation mediates cancer-related fatigue. However, evidence to support this assertion is mostly correlational.

View Article and Find Full Text PDF