Non-volcanic tremor is a particularly enigmatic form of seismic activity. In its most studied subduction zone setting, tremor typically occurs within the plate interface at or near the shallow and deep edges of the interseismically locked zone. Detailed seismic observations have shown that tremor is composed of repeating small low-frequency earthquakes, often accompanied by very-low-frequency earthquakes, all involving shear failure and slip.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2022
When continents collide, the typical embayments and protrusions along their rifted margins make it likely that fragments of seafloor will be trapped within the growing orogenic belt. These trapped seafloor fragments become preferential depocenters for marine and terrestrial sedimentation. After ∼0.
View Article and Find Full Text PDFPlate-boundary fault rupture during the 2004 Sumatra-Andaman subduction earthquake extended closer to the trench than expected, increasing earthquake and tsunami size. International Ocean Discovery Program Expedition 362 sampled incoming sediments offshore northern Sumatra, revealing recent release of fresh water within the deep sediments. Thermal modeling links this freshening to amorphous silica dehydration driven by rapid burial-induced temperature increases in the past 9 million years.
View Article and Find Full Text PDFTectonic erosion of the overriding plate by the downgoing slab is believed to occur at half the Earth's subduction zones. In situ investigation of the geological processes at active erosive margins is extremely difficult owing to the deep marine environment and the net loss of forearc crust to deeper levels in the subduction zone. Until now, a fossil erosive subduction channel-the shear zone marking the plate boundary-has not been recognized in the field, so that seismic observations have provided the only information on plate boundary processes at erosive margins.
View Article and Find Full Text PDF