Microglia (MG), the brain-resident macrophages, play major roles in health and disease via a diversity of cellular states. While embryonic MG display a large heterogeneity of cellular distribution and transcriptomic states, their functions remain poorly characterized. Here, we uncovered a role for MG in the maintenance of structural integrity at two fetal cortical boundaries.
View Article and Find Full Text PDFMicroglia are embryonically seeded macrophages that contribute to brain development, homeostasis, and pathologies. It is thus essential to decipher how microglial properties are temporally regulated by intrinsic and extrinsic factors, such as sexual identity and the microbiome. Here, we found that microglia undergo differentiation phases, discernable by transcriptomic signatures and chromatin accessibility landscapes, which can diverge in adult males and females.
View Article and Find Full Text PDFNeocortex functioning relies on the formation of complex networks that begin to be assembled during embryogenesis by highly stereotyped processes of cell migration and axonal navigation. The guidance of cells and axons is driven by extracellular cues, released along by final targets or intermediate targets located along specific pathways. In particular, guidepost cells, originally described in the grasshopper, are considered discrete, specialized cell populations located at crucial decision points along axonal trajectories that regulate tract formation.
View Article and Find Full Text PDFDysfunction of microglia, the tissue macrophages of the brain, has been associated with the etiology of several neuropsychiatric disorders. Consistently, microglia have been shown to regulate neurogenesis and synaptic maturation at perinatal and postnatal stages. However, microglia invade the brain during mid-embryogenesis and thus could play an earlier prenatal role.
View Article and Find Full Text PDFDeveloping axons must control their growth rate to follow the appropriate pathways and establish specific connections. However, the regulatory mechanisms involved remain elusive. By combining live imaging with transplantation studies in mice, we found that spontaneous calcium activity in the thalamocortical system and the growth rate of thalamocortical axons were developmentally and intrinsically regulated.
View Article and Find Full Text PDFTyrosinases, widely distributed among animals, plants and fungi, are involved in the biosynthesis of melanin, a pigment that has been exploited, in the course of evolution, to serve different functions. We conducted a deep evolutionary analysis of tyrosinase family amongst metazoa, thanks to the availability of new sequenced genomes, assessing that tyrosinases (tyr) represent a distinctive feature of all the organisms included in our study and, interestingly, they show an independent expansion in most of the analyzed phyla. Tyrosinase-related proteins (tyrp), which derive from tyr but show distinct key residues in the catalytic domain, constitute an invention of chordate lineage.
View Article and Find Full Text PDFFGF and Wnt pathways constitute two fundamental signaling cascades, which appear to crosstalk in cooperative or antagonistic fashions in several developmental processes. In vertebrates, both cascades are involved in pigment cell development, but the possible interplay between FGF and Wnt remains to be elucidated. In this study, we have investigated the role of FGF and Wnt signaling in development of the pigment cells in the sensory organs of C.
View Article and Find Full Text PDFBackground: The study of ascidians (Chordata, Tunicata) has made a considerable contribution to our understanding of the origin and evolution of basal chordates. To provide further information to support forward genetics in Ciona intestinalis, we used a combination of natural variation and neutral population genetics as an approach for the systematic identification of new mutations. In addition to the significance of developmental variation for phenotype-driven studies, this approach can encompass important implications in evolutionary and population biology.
View Article and Find Full Text PDFA systematic search in the available scaffolds of the Strongylocentrotus purpuratus genome has revealed that this sea urchin has 11 members of the ets gene family. A phylogenetic analysis of these genes showed that almost all vertebrate ets subfamilies, with the exception of one, so far found only in mammals, are each represented by one orthologous sea urchin gene. The temporal and spatial expression of the identified ETS factors was also analyzed during embryogenesis.
View Article and Find Full Text PDF