Publications by authors named "Paola Signorelli"

Article Synopsis
  • The study investigates the lipid and metabolite profiles in Parkinson's disease (PD) patients to uncover new pathways and potential biomarkers for early detection and treatment.* -
  • It highlights significant differences in lipid profiles among three groups (No L-Dopa, L-Dopa, and DBS) with findings that show increases in specific lipid species, particularly with deep brain stimulation (DBS) treatment.* -
  • The research also reveals dysregulation in amino acid metabolism, especially L-glutamic acid, suggesting that DBS may positively influence glutamate levels, offering insights for future PD diagnosis and therapies.*
View Article and Find Full Text PDF

Interval-training is widely implemented among populations with obesity to decrease metabolic-disorders; however, high-intensity-interval-training (HIIT) has rarely been studied in severely obese adolescent girls. Therefore, the aim of this study was to compare the effects of 8 weeks of (HIIT) or moderate-intensity interval-training (MIIT), on cardiometabolic risk factors and hormonal-ratios in severely-obese-girls. For this aim, 35 female-adolescents (14.

View Article and Find Full Text PDF

This study aimed to investigate the impact of moderate- or high-intensity interval training (MIIT or HIIT) on anthropometric and biological measurements in four groups of females with obesity. Fifty-seven participants were divided into a moderate obesity group (MOG, = 29) and a severe obesity group (SOG, = 28). Two sub-groups were established to practice HIIT and MIIT programs (SOG, = 14; SOG, = 14; MOG, = 14; MOG, = 15).

View Article and Find Full Text PDF
Article Synopsis
  • * Maintaining a balance between ceramide and S1P is crucial to prevent endothelial dysfunction, which is a key trigger for atherosclerosis and is linked to higher oxidative stress levels.
  • * Modulating the levels of ceramide and S1P could lead to new antioxidant therapies that may help prevent or slow down atherosclerosis, ultimately improving patient outcomes in coronary artery disease.
View Article and Find Full Text PDF

Non-Invasive Brain Stimulation (NIBS) techniques, such as transcranial Direct Current Stimulation (tDCS) and repetitive Magnetic Transcranial Stimulation (rTMS), are well-known non-pharmacological approaches to improve both motor and non-motor symptoms in patients with neurodegenerative disorders. Their use is of particular interest especially for the treatment of cognitive impairment in Alzheimer's Disease (AD), as well as axial disturbances in Parkinson's (PD), where conventional pharmacological therapies show very mild and short-lasting effects. However, their ability to interfere with disease progression over time is not well understood; recent evidence suggests that NIBS may have a neuroprotective effect, thus slowing disease progression and modulating the aggregation state of pathological proteins.

View Article and Find Full Text PDF

Background: It has been established that sphingomyelin present human breast milk is useful for the brain maturation and cognitive development. At 10 days of breastfeeding the sphingomyelin content is double that present in cow's milk and its content is independent of the maternal diet. The aim of the study was to analyze the content of sphingomyelin in breast milk at 3 months of breastfeeding and to consider the effect of this molecule on synaptic function and nerve conduction through the probable expansion of myelinated axons.

View Article and Find Full Text PDF

Chronic kidney disease (CKD) subjects suffer from high risk of cardiovascular mortality, and any intervention preventing the progression of CKD may have an enormous impact on public health. In the last decade, there has been growing awareness that the gut microbiota (GM) can play a pivotal role in controlling the pathogenesis of systemic inflammatory state and CKD progression. To ameliorate the quality of life in CKD subjects, the use of dietary supplements has increased over time.

View Article and Find Full Text PDF

Advances over the past decade have improved our understanding of the role of sphingolipid in the onset and progression of Parkinson's disease. Much attention has been paid to ceramide derived molecules, especially glucocerebroside, and little on sphingomyelin, a critical molecule for brain physiopathology. Sphingomyelin has been proposed to be involved in PD due to its presence in the myelin sheath and for its role in nerve impulse transmission, in presynaptic plasticity, and in neurotransmitter receptor localization.

View Article and Find Full Text PDF

The role of S1P in Cystic Fibrosis (CF) has been investigated since 2001, when it was first described that the CFTR channel regulates the inward transport of S1P. From then on, various studies have associated F508del CFTR, the most frequent mutation in CF patients, with altered S1P expression in tissue and plasma. We found that human bronchial epithelial immortalized and primary cells from CF patients express more S1P than the control cells, as evidenced by mass spectrometry analysis.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a proteinopathy associated with the aggregation of α-synuclein and the formation of lipid-protein cellular inclusions, named Lewy bodies (LBs). LB formation results in impaired neurotransmitter release and uptake, which involve membrane traffic and require lipid synthesis and metabolism. Lipids, particularly ceramides, are accumulated in postmortem PD brains and altered in the plasma of PD patients.

View Article and Find Full Text PDF

Cystic fibrosis (CF) is a hereditary disease mostly related to ΔF508 CFTR mutation causing a proteinopathy that is characterized by multiple organ dysfunction, primarily lungs chronic inflammation, and infection. Defective autophagy and accumulation of the inflammatory lipid ceramide have been proposed as therapeutic targets. Accumulation of lipids and cholesterol was reported in the airways of CF patients, together with altered triglycerides and cholesterol levels in plasma, thus suggesting a disease-related dyslipidemia.

View Article and Find Full Text PDF
Article Synopsis
  • * Sphingolipids (SLs), particularly ceramide and sphingosine-1-phosphate (S1P), are gaining attention for their roles in heart health and disease, as they affect cell growth and death.
  • * The balance between ceramide and S1P is critical for cardiac cell function, suggesting that targeting their metabolism with drugs like myriocin and FTY720 could offer new therapeutic strategies for managing CVDs.
View Article and Find Full Text PDF

Background: In the past two decades, sphingolipids have become increasingly appreciated as bioactive molecules playing important roles in a wide array of pathophysiology mechanisms. Despite advances in the field, sphingolipids as nutrients remain little explored. Today the research is starting to move towards the study of the sphingomyelin content in human breast milk, recommended for feeding infants.

View Article and Find Full Text PDF

Cystic fibrosis (CF) is a hereditary disease, with 70% of patients developing a proteinopathy related to the deletion of phenylalanine 508. CF is associated with multiple organ dysfunction, chronic inflammation, and recurrent lung infections. CF is characterized by defective autophagy, lipid metabolism, and immune response.

View Article and Find Full Text PDF

Neuronal homeostasis depends on both simple and complex sugars (the glycoconjugates), and derangement of their metabolism is liable to impair neural function and lead to neurodegeneration. Glucose levels boost glycation phenomena, a wide series of non-enzymatic reactions that give rise to various intermediates and end-products that are potentially dangerous in neurons. Glycoconjugates, including glycoproteins, glycolipids, and glycosaminoglycans, contribute to the constitution of the unique features of neuron membranes and extracellular matrix in the nervous system.

View Article and Find Full Text PDF

Altered lipid metabolism has been associated to cystic fibrosis disease, which is characterized by chronic lung inflammation and various organs dysfunction. Here, we present the validation of an untargeted lipidomics approach based on high-resolution mass spectrometry aimed at identifying those lipid species that unequivocally sign CF pathophysiology. Of n.

View Article and Find Full Text PDF

Preclinical cardiac MR is challenging and time-consuming. A fast and comprehensive acquisition protocol and standardized image post-processing may improve preclinical research, reducing acquisition time, costs and variability of results. In the present study, we evaluated the feasibility of a contrast-enhanced 3D IntraGate steady-state cine sequence (ce-3D-IG-cine) with short acquisition time (11 min) for a single-shot combined characterization of left ventricle (LV) remodeling and infarct size (IS) in a mouse model of acute ischemia-reperfusion injury.

View Article and Find Full Text PDF

Background/aims: Cystic Fibrosis (CF) is an inherited disease associated with a variety of mutations affecting the CFTR gene. A deletion of phenylalanine 508 (F508) affects more than 70% of patients and results in unfolded proteins accumulation, originating a proteinopathy responsible for inflammation, impaired trafficking, altered metabolism, cholesterol and lipids accumulation, impaired autophagy at the cellular level. Lung inflammation has been extensively related to the accumulation of the lipotoxin ceramide.

View Article and Find Full Text PDF

Myocardial infarct requires prompt thrombolytic therapy or primary percutaneous coronary intervention to limit the extent of necrosis, but reperfusion creates additional damage. Along with reperfusion, a maladaptive remodeling phase might occur and it is often associated with inflammation, oxidative stress, as well as a reduced ability to recover metabolism homeostasis. Infarcted individuals can exhibit reduced lipid turnover and their accumulation in cardiomyocytes, which is linked to a deregulation of peroxisome proliferator activated receptors (PPARs), controlling fatty acids metabolism, energy production, and the anti-inflammatory response.

View Article and Find Full Text PDF

Myriocin is a potent inhibitor of serine-palmitoyl-transferase, the first and rate-determining enzyme in the sphingolipids biosynthetic pathway. This study developed, validated and applied a LC-MS/MS method to measure myriocin in minute specimens of animal tissue. The chemical analog 14-OH-myriocin was used as the internal standard.

View Article and Find Full Text PDF

Our aim was to use quantitative and qualitative analyses to gain further insight into the role of ceramide in cystic fibrosis (CF). Sphingolipid ceramide is a known inflammatory mediator, and its accumulation in inflamed lung has been reported in different types of emphysema, chronic obstructive pulmonary disease and CF. CF is caused by a mutation of the chloride channel and associated with hyperinflammation of the respiratory airways and high susceptibility to ongoing infections.

View Article and Find Full Text PDF

Retinal degeneration and in particular retinitis pigmentosa (RP) is associated to ceramide (Cer) accumulation and cell death induction. Cer and sphingosine-1-phosphate (S1P) belong to the sphingolipids class and exert a pro-apoptotic and pro-survival activity, respectively. Our aim is to target sphingolipid metabolism by inhibiting S1P lyase that regulates one of the S1P degradation pathways, to reduce retinal photoreceptor damage.

View Article and Find Full Text PDF

Exposure to cigarette smoke represents the most important risk factor for the development of chronic obstructive pulmonary disease (COPD). COPD is characterized by chronic inflammation of the airways, imbalance of proteolytic activity resulting in the destruction of lung parenchyma, alveolar hypoxia, oxidative stress, and apoptosis. Sphingolipids are structural membrane components whose metabolism is altered during stress.

View Article and Find Full Text PDF

Background: Fungal infections develop in pulmonary chronic inflammatory diseases such as asthma, Chronic Obstructive Pulmonary Disease (COPD) and Cystic Fibrosis (CF). The available antifungal drugs may fail to eradicate fungal pathogens, that can invade the lungs and vessels and spread by systemic circulation taking advantage of defective lung immunity. An increased rate of sphingolipid de novo synthesis, leading to ceramide accumulation, was demonstrated in CF and COPD inflamed lungs.

View Article and Find Full Text PDF

The injury caused by myocardial reperfusion after ischemia can be contained by interventions aimed at reducing the inflammation and the oxidative stress that underlie exacerbation of tissue damage. Sphingolipids are a class of structural and signaling lipid molecules; among them, the inflammation mediator ceramide accumulates in the myocardium upon ischemia/reperfusion. Here, we show that, after transient coronary occlusion in mice, an increased de novo ceramide synthesis takes place at reperfusion in the ischemic area surrounding necrosis (area at risk).

View Article and Find Full Text PDF