Biodegradable polymers and their blends have been advised as an eco-sustainable solution; however, the generation of microplastics (MPs) from their degradation in aquatic environments is still not fully grasped. In this study, we investigated the formation of bio-microplastics (BMPs) and the changes in the physicochemical properties of blown packaging films based on polylactic acid (PLA), polybutylene succinate (PBS) and a PBS/PLA 70/30 wt% blend after degradation in different aquatic media. The tests were carried out in two temperature/light conditions to simulate degradation in either warm water, under sunlight exposure (named Warm and Light-W&L), and cold deep water (named Cold and Dark-C&D).
View Article and Find Full Text PDFBiopolymers are of growing interest, but to improve some of their poor properties and performance, the formulation of bio-based blends and/or adding of nanoparticles is required. For this purpose, in this work, two different metal oxides, namely zinc oxide (ZnO) and titanium dioxide (TiO), at different concentrations (0.5, 1, and 2%wt.
View Article and Find Full Text PDFPolyvinyl alcohol (PVOH) exhibits outstanding gas-barrier properties, which favor its use as a biodegradable, high-barrier coating on food-packaging films, possibly in combination with modified atmospheres. Nonetheless, its high sensitivity to water can result in a severe loss of barrier properties, significantly limiting its applications with fresh foods and in high-humidity conditions. In this work, the water vapor (P) and oxygen permeability (PO) of high-barrier biodegradable films with PVOH/PLA + wax double coatings were extensively characterized in a wide range of relative humidity (from 30 to 90%), aimed at understanding the extent of the interaction of water with the wax and the polymer matrices and the impact of this on the permeation process.
View Article and Find Full Text PDFMicroplastics (MPs) pollution has emerged as one of the world's most serious environmental issues, with harmful consequences for ecosystems and human health. One proposed solution to their accumulation in the environment is the replacement of nondegradable plastics with biodegradable ones. However, due to the lack of true biodegradability in some ecosystems, they also give rise to biodegradable microplastics (BioMPs) that negatively impact different ecosystems and living organisms.
View Article and Find Full Text PDFThe goal of this work was to investigate the morphological and chemical-physical changes induced by adding ZnO nanoparticles to bio-based polymeric materials based on polylactic acid (PLA) and polyamide 11 (PA11). Precisely, the photo- and water-degradation phenomena of nanocomposite materials were monitored. For this purpose, the formulation and characterization of novel bio-nanocomposite blends based on PLA and PA11 at a ratio of 70/30 wt.
View Article and Find Full Text PDFThe increase in concrete structures' durability is a milestone to improve the sustainability of buildings and infrastructures. In order to ensure a prolonged service life, it is necessary to detect the deterioration of materials by means of monitoring systems aimed at evaluating not only the penetration of aggressive substances into concrete but also the corrosion of carbon-steel reinforcement. Therefore, proper data collection makes it possible to plan suitable restoration works which can be carried out with traditional or innovative techniques and materials.
View Article and Find Full Text PDFUtilization of food-waste-derived bioactive compounds with biodegradable polymers is an attractive strategy leading innovation in the food packaging sector and contributing to reduce the environmental concerns of plastic packaging disposal. In this field, this work is aimed to use hazelnut perisperm as an antioxidant agent in the production of biodegradable polymeric films for active packaging applications. For this purpose, hazelnut perisperm of a selected particle size (<250 μm) at different percentages (0%, 5% and 10% by weight) was added to a bioderived and compostable polymer suitable for food contact, known as Ecovio®.
View Article and Find Full Text PDFHeat-shrinkable films, largely made of polyolefins and widely employed in the packaging sector as collation or barrier films, due to their short service life, are held responsible for high environmental impact. One possible strategy for reduction in their carbon footprint can be the use of biodegradable polymers. Thus, this work aimed to develop novel, heat-shrinkable, fully biodegradable films for green packaging applications and to analyze their functional performance.
View Article and Find Full Text PDFUnlabelled: Increasing consumer demand for foods with high nutritional quality, prolonged shelf life and low environmental impact of the package, is driving innovation towards the development of new packaging. Multifunctional food packaging films, biodegradable, heat-sealable and antimicrobial, were developed. A PLA coating layer incorporating either sodium benzoate, potassium sorbate, or a combination of them was deposited onto a poly(lactic) acid/poly(butylene adipate-co-terephthalate) substrate film.
View Article and Find Full Text PDFToday's world is at the point where almost everyone realizes the usefulness of going green. Due to so-called global warming, there is an urgent need to find solutions to help the Earth and move towards a green future. Many worldwide events are focusing on the global technologies in plastics, bioplastic production, the recycling industry, and waste management where the goal is to turn plastic waste into a trade opportunity among the industrialists and manufacturers.
View Article and Find Full Text PDFBiodegradable polymers suffer from inherent performance limitations that severely limit their practical application. Their functionalization by coating technology is a promising strategy to significantly improve their physical properties for food packaging. In this study, we investigated the double coating technique to produce multifunctional, high barrier and heat-sealable biodegradable films.
View Article and Find Full Text PDFCurrently, plastic packaging represents a global challenge and has become a key point of attention for governments, media and consumers due to the visibility of the waste it generates. Despite their high resource efficiency, the perceived non-recyclability of polymeric films risks precluding them from being a relevant packaging solution in a circular economy approach. In this regard, the aim of this study was to implement a strategy to try closing the loop, via the mechanical recycling of post-consumer flexible packaging of small size (denoted as Fil-s) to obtain new films.
View Article and Find Full Text PDFThis study focuses on the upgrading strategies to make Fil-s (acronym for film-small), a polyolefin-based material coming from the mechanical recycling of post-consumer flexible packaging, fit for re-use in the piping sector. The effects of washing treatments (at cold and hot conditions) and the addition of an experimental compatibilizer on the chemical-physical properties of Fil-s were first assessed. The measurements of some key properties (density, melt flow index, flexural modulus, yield strength), for both Fil-s as such and the different developed Fil-s based systems, was also conducted in order to evaluate the suitability of this complex and challenging waste stream to replace virgin PE-based pipe and fitting products, in compliance to ASTM D3350 standard.
View Article and Find Full Text PDFIn this work, eco-sustainable blown films with improved performance, suitable for flexible packaging applications requiring high ductility, were developed and characterized. Films were made by blending two bioplastics with complementary properties-the ductile and flexible poly(butylene-adipate--terephthalate) (PBAT) and the rigid and brittle poly(lactic acid) (PLA)-at a 60/40 mass ratio. With the aim of improving the blends' performance, the effects of two types of PLA, differing for viscosity and stereoregularity, and the addition of a commercial polymer chain extender (Joncryl), were analyzed.
View Article and Find Full Text PDFThe use of biopolymers can reduce the environmental impact generated by plastic materials. Among biopolymers, blends made of poly(lactide) (PLA) and poly(butylene-adipate-co-terephthalate) (PBAT) prove to have adequate performances for food packaging applications. Therefore, the present work deals with the production and the characterization of blown films based on PLA and PBAT blends in a wide range of compositions, in order to evaluate their suitability as chilled and frozen food packaging materials, thus extending their range of applications.
View Article and Find Full Text PDFThe aim of this work was to improve the performances of Fil-s (film-small), a recycled material obtained from plastic flexible film waste that is made of polyethylene and a minor amount of polypropylene, with traces of polar contaminants (polyamides, maleic anhydride, etc.). The idea was to upgrade the material's mechanical properties by applying a nanotechnology-based strategy that takes advantage of the composition of Fil-s.
View Article and Find Full Text PDFInorganic⁻organic multilayer films consisting of polymers coated with thin inorganic oxidic layers (e.g., SiOx) ensure very high barrier performances against gas and vapor permeation, what makes them packaging materials suitable for sophisticated technical applications, including the encapsulation of photovoltaic devices or quantum dots, barrier films for optical displays, and transparent greenhouse screens.
View Article and Find Full Text PDFIn this study, the possibility of using a layered silicate-reinforced polylactic acid (PLA) in additive manufacturing applications was investigated. In particular, the aim of this work was to study the influence of printing temperature in the 3D printing process of PLA/clay nanocomposites. For this reason, two PLA grades (4032D and 2003D, D-isomer content 1.
View Article and Find Full Text PDFThis review presents "a state of the art" report on sustainability in construction materials. The authors propose different solutions to make the concrete industry more environmentally friendly in order to reduce greenhouse gases emissions and consumption of non-renewable resources. Part 1-the present paper-focuses on the use of binders alternative to Portland cement, including sulfoaluminate cements, alkali-activated materials, and geopolymers.
View Article and Find Full Text PDFJ Appl Biomater Funct Mater
October 2018
The paper represents the "state of the art" on sustainability in construction materials. In Part 1 of the paper, issues related to production, microstructures, chemical nature, engineering properties, and durability of mixtures based on binders alternative to Portland cement were presented. This second part of the paper concerns the use of traditional and innovative Portland-free lime-based mortars in the conservation of cultural heritage, and the recycling and management of wastes to reduce consumption of natural resources in the production of construction materials.
View Article and Find Full Text PDFThe data presented in this article are related to the research article entitled "Hygro-thermal and durability properties of a lightweight mortar made with foamed plastic waste aggregates" (Coppola et al., 2018) [1]. This article focuses the attention on thermal conductivity, water vapour permeability and water absorption of a lightweight cementitious mortar containing foamed end-of-waste plastic aggregates, produced via foam extrusion process [2].
View Article and Find Full Text PDFIn this work, the influence of composition and cold-drawing on nano- and micro-scale morphology and tensile mechanical properties of PE/organoclay nanocomposite fibers was investigated. Nanocomposites were prepared by melt compounding in a twin-screw extruder, using a maleic anhydride grafted linear low density polyethylene (LLDPE⁻⁻MA) and an organomodified montmorillonite (Dellite 67G) at three different loadings (3, 5 and 10 wt %). Fibers were produced by a single-screw extruder and drawn at five draw ratios (DRs): 7.
View Article and Find Full Text PDFFood Addit Contam Part A Chem Anal Control Expo Risk Assess
October 2017
The aim of the study was the development of a multifunctional, high-performance, fully biodegradable multilayer polylactic acid (PLA) film for food packaging applications. In particular, sealable multilayer PLA-clay nanocomposite systems with different layouts in terms of composition and relative thickness of the layers, all consisting of a PLA-clay nanocomposite layer between two pure PLA layers for direct food contact, were designed and produced by blown film co-extrusion. The films obtained were analysed for their morphology, functional properties and lactic acid (LA)-specific migration in 50% ethanol.
View Article and Find Full Text PDF