Publications by authors named "Paola Rivera-Munoz"

JAK3-activating mutations are commonly seen in chronic or acute hematologic malignancies affecting the myeloid, megakaryocytic, lymphoid, and natural killer (NK) cell compartment. Overexpression models of mutant JAK3 or pharmacologic inhibition of its kinase activity have highlighted the role that these constitutively activated mutants play in the T-cell, NK cell, and megakaryocytic lineages, but to date, the functional impact of JAK3 mutations at an endogenous level remains unknown. Here, we report a JAK3 knockin mouse model and demonstrate that activated JAK3 leads to a progressive and dose-dependent expansion of CD8 T cells in the periphery before colonization of the bone marrow.

View Article and Find Full Text PDF

Cernunnos is a DNA repair factor of the nonhomologous end-joining machinery. Its deficiency in humans causes radiosensitive severe combined immune deficiency (SCID) with microcephaly, characterized in part by a profound lymphopenia. In contrast to the human condition, the immune system of Cernunnos knockout (KO) mice is not overwhelmingly affected.

View Article and Find Full Text PDF
Article Synopsis
  • Acute megakaryoblastic leukemia (AMKL) is a complex and aggressive form of leukemia with poor outcomes, often lacking identifiable mutations in patients, making treatment challenging.* -
  • Researchers modeled pediatric AMKL using immunodeficient mice and identified new molecular subgroups through high-throughput RNA sequencing, including notable gene fusions like CBFA2T3-GLIS2 and MLL or NUP98 fusions.* -
  • The findings offer potential biomarkers for diagnosing and monitoring AMKL, and the xenograft models developed can be used to test the effectiveness of new treatments, such as Aurora A kinase inhibitors.*
View Article and Find Full Text PDF

The NOTCH signaling pathway is implicated in a broad range of developmental processes, including cell fate decisions. However, the molecular basis for its role at the different steps of stem cell lineage commitment is unclear. We recently identified the NOTCH signaling pathway as a positive regulator of megakaryocyte lineage specification during hematopoiesis, but the developmental pathways that allow hematopoietic stem cell differentiation into the erythro-megakaryocytic lineages remain controversial.

View Article and Find Full Text PDF

Nonhomologous end-joining DNA repair factors, including Artemis, are all required for the repair of DNA double-strand breaks, which occur during the assembly of the variable antigen recognition domain of B-cell receptors and T-cell receptors through the V(D)J recombination. Mature B cells further shape their immunoglobulin repertoire on antigen recognition notably through the class switch recombination (CSR) process. To analyze the role of Artemis during CSR, we developed a mature B-cell-specific Artemis conditional knockout mouse to bypass the absence of B cells caused by its early deficit.

View Article and Find Full Text PDF

The core nonhomologous end-joining DNA repair pathway is composed of seven factors: Ku70, Ku80, DNA-PKcs, Artemis, XRCC4 (X4), DNA ligase IV (L4), and Cernunnos/XLF (Cernunnos). Although Cernunnos and X4 are structurally related and participate in the same complex together with L4, they have distinct functions during DNA repair. L4 relies on X4 but not on Cernunnos for its stability, and L4 is required for optimal interaction of Cernunnos with X4.

View Article and Find Full Text PDF

B and T lymphocytes are exposed to various genotoxic stresses during their life, which originate from programmed molecular mechanisms during their development and maturation or are secondary to cellular metabolism during acute phases of cell proliferation and activation during immune responses. How lymphocytes handle these multiple genomic assault has become a focus of interest over the years, perhaps beginning with the identification of the murine scid model in the early 80s when it was recognized that DNA repair deficiencies had profound consequences on the immune system. In this respect, the immune system represents an ideal model to study DNA damage responses (DDR) and the survey of immune deficiency conditions in humans or the development of specific animal models provided many major contributions in our understanding of the various biochemical pathways at play during DDR in general.

View Article and Find Full Text PDF

V(D)J recombination and immunoglobulin class switch recombination (CSR) are two somatic rearrangement mechanisms that proceed through the introduction of double-strand breaks (DSBs) in DNA. Although the DNA repair factor XRCC4 is essential for the resolution of DNA DSB during V(D)J recombination, its role in CSR has not been established. To bypass the embryonic lethality of XRCC4 deletion in mice, we developed a conditional XRCC4 knockout (KO) using LoxP-flanked XRCC4 cDNA lentiviral transgenesis.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session6m62sajce10vvhf4t6e34ri08502jki6): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once