Duchenne muscular dystrophy is the most common genetic muscular dystrophy. It is caused by mutations in the dystrophin gene, leading to absence of muscular dystrophin and to progressive degeneration of skeletal muscle. We have demonstrated that the exon skipping method safely and efficiently brings to the expression of a functional dystrophin in dystrophic CD133+ cells injected scid/mdx mice.
View Article and Find Full Text PDFUnlabelled: Human placental mesenchymal stromal cells (pMSCs) have never been investigated in intrauterine growth restriction (IUGR). We characterized cells isolated from placental membranes and the basal disc of six IUGR and five physiological placentas. Cell viability and proliferation were assessed every 7 days during a 6-week culture.
View Article and Find Full Text PDFDuchenne muscular dystrophy (DMD) is characterized by the loss of a functional dystrophin protein; the muscles of DMD patients progressively degenerate as a result of mechanical stress during contractions, and the condition eventually leads to premature death. By means antisense oligonucleotides (AONs), it is possible to modulate pre-mRNA splicing eliminating mutated exons and restoring dystrophin open reading frame. To overcome the hurdles in using AONs for therapeutic interventions, we exerted engineered human DMD stem cells with a lentivirus, which permanently and efficiently delivered the cloned AONs.
View Article and Find Full Text PDFDuchenne muscular dystrophy (DMD), the most common form of muscular dystrophy, is characterized by muscular wasting caused by dystrophin deficiency that ultimately ends in force reduction and premature death. In addition to primary genetic defect, several mechanisms contribute to DMD pathogenesis. Recently, antioxidant supplementation was shown to be effective in the treatment of multiple diseases including muscular dystrophy.
View Article and Find Full Text PDFDespite continuous improvements in therapeutic protocols, cancer-related mortality is still one of the main problems facing public health. The main cause of treatment failure is multi-drug resistance (MDR: simultaneous insensitivity to different anti-cancer agents), the underlying molecular and biological mechanisms of which include the activity of ATP binding cassette (ABC) proteins and drug compartmentalisation in cell organelles. We investigated the expression of the main ABC proteins and the role of cytoplasmic vacuoles in the MDR of six hepatocellular carcinoma (HCC) cell lines, and confirmed the accumulation of the yellow anti-cancer drug sunitinib in giant (four lines) and small cytoplasmic vacuoles of lysosomal origin (two lines).
View Article and Find Full Text PDFWe previously developed a collagen tube filled with autologous skin-derived stem cells (SDSCs) for bridging long rat sciatic nerve gaps. Here we present a case report describing a compassionate use of this graft for repairing the polyinjured motor and sensory nerves of the upper arms of a patient. Preclinical assessment was performed with collagen/SDSC implantation in rats after sectioning the sciatic nerve.
View Article and Find Full Text PDFThe protein dysferlin is abundantly expressed in skeletal and cardiac muscles, where its main function is membrane repair. Mutations in the dysferlin gene are involved in two autosomal recessive muscular dystrophies: Miyoshi myopathy and limb-girdle muscular dystrophy type 2B. Development of effective therapies remains a great challenge.
View Article and Find Full Text PDFMuscular dystrophies are heritable and heterogeneous neuromuscular disorders characterized by the primary wasting of skeletal muscle, usually caused by mutations in the proteins forming the link between the cytoskeleton and the basal lamina. As a result of mutations in the dystrophin gene, Duchenne muscular dystrophy patients suffer from progressive muscle atrophy and an exhaustion of muscular regenerative capacity. No efficient therapies are available.
View Article and Find Full Text PDFInt J Biochem Cell Biol
December 2012
Among the scarce available data about the biological role of the membrane protein CD20, there is some evidence that this protein functions as a store-operated Ca(2+) channel and/or regulates transmembrane Ca(2+) trafficking. Recent findings indicate that store-operated Ca(2+) entry (SOCE) plays a central role in skeletal muscle function and development, but there remain a number of unresolved issues relating to SOCE modulation in this tissue. Here we describe CD20 expression in skeletal muscle, verifying its membrane localization in myoblasts and adult muscle fibers.
View Article and Find Full Text PDFRecently published reports have described possible cellular therapy approaches to regenerate muscle tissues using arterial route delivery. However, the kinetic of distribution of these migratory stem cells within injected animal muscular dystrophy models is unknown. Using living X-ray computed microtomography, we established that intra-arterially injected stem cells traffic to multiple muscle tissues for several hours until their migration within dystrophic muscles.
View Article and Find Full Text PDFDysferlin mutations cause muscular dystrophy (dysferlinopathy) characterized by adult onset muscle weakness, high serum creatine kinase levels, attenuation of muscle regeneration and a prominent inflammatory infiltrate. In order to verify the role of lymphocytes and immune cells on this disease, we generated the Scid/A/J transgenic mice and compared these animals with the age-matched A/J mice. The absence of T and B lymphocytes in this animal model of dysferlinopathy resulted in an improvement of the muscle regeneration.
View Article and Find Full Text PDFAdvances in stem cell research have provided important understanding of the cell biology and offered great promise for developing new strategies for tissue regeneration. Dynamic determination of stem cell migration and distribution in real time is essential for optimizing treatments in preclinical models and designing clinical protocols. Recent developments in the use of nanotechnologies have contributed to advance of the high-resolution in vivo imaging methods, including the positron emission tomography, the single-photon emission computed tomography, the magnetic resonance imaging, and microcomputed tomography.
View Article and Find Full Text PDFAdvances in stem cell research have provided important understanding of the cell biology and offered great promise for developing new strategies for tissue regeneration. The beneficial effects of stem cell therapy depend also by the development of new approachs for the track of stem cells in living subjects over time after transplantation. Recent developments in the use of nanotechnologies have contributed to advance of the high-resolution in vivo imaging methods, including positron emission tomography (PET), single-photon emission tomography (SPECT), magnetic resonance (MR) imaging, and X-Ray computed microtomography (microCT).
View Article and Find Full Text PDFEx vivo expansion of hematopoietic stem cells has been explored in the fields of stem cell biology, gene therapy and clinical transplantation. Recently, we demonstrated the existence of a circulating myogenic progenitor expressing the CD133 antigen. The relative inability of circulating CD133+ stem cells to reproduce themselves ex vivo imposes substantial limitations on their use for clinical applications in muscular dystrophies.
View Article and Find Full Text PDFMutations in the dystrophin gene cause an X-linked genetic disorder: Duchenne muscular dystrophy (DMD). Stem cell therapy is an attractive method to treat DMD because a small number of cells are required to obtain a therapeutic effect. Here, we discussed about multiple types of myogenic stem cells and their possible use to treat DMD.
View Article and Find Full Text PDFIn recent years, numerous reports have identified in mouse different sources of myogenic cells distinct from satellite cells that exhibited a variable myogenic potential in vivo. Myogenic stem cells have also been described in humans, although their regenerative potential has rarely been quantified. In this study, we have investigated the myogenic potential of human muscle-derived cells based on the expression of the stem cell marker CD133 as compared to bona fide satellite cells already used in clinical trials.
View Article and Find Full Text PDF