Background And Objectives: Within the framework of computational biomechanics, finite element models of the gastric district could be seen as a potential clinical tool not only to study the effects apported by bariatric surgery, but also to compare different surgical techniques such as the new emerging Endoscopic Sleeve Gastroplasty (ESG) with respect to well-established ones (such as the Laparoscopic Sleeve Gastrectomy, LSG).
Methods: This work realized a fully computational comparison between the outcomes obtained from 10 patient-specific stomach models, which were used to simulate ESG, and the complementary results obtained from models representing the post-LSG of the same subjects. Specifically, once the ESG was simulated, a mechanical stimulus was applied by increasing an intragastric pressure up to a maximum of 5 kPa, in order to replicate the process of food intake, as well as for post-LSG models.