The increasing availability of coarse-scale climate simulations and the need for ready-to-use high-resolution variables drive the climate community to the challenge of reducing computational resources and time for downscaling purposes. To this end, statistical downscaling is gaining interest as a potential strategy for integrating high-resolution climate information obtained through dynamical downscaling over limited years, providing a clear understanding of the gains and losses in combining dynamical and statistical downscaling. In this regard, several questions can be raised: (i) what is the performance of statistical downscaling, assuming dynamical downscaling as a reference over a shared time window; (ii) how much the performance of statistical downscaling is affected by changes in the number of years available for training; (iii) how does the climate normal considered for the training affect the predictions.
View Article and Find Full Text PDFNowadays, within the built environment, railway infrastructures play a key role to sustain national policies oriented toward promoting sustainable mobility. For this reason, national institutions and infrastructure managers need to increase their awareness in relation to the current and future climate risks on their representative systems. Among climate change impacts, preventing the effects of sea-level rise (SLR) on coastal railway infrastructures is a priority.
View Article and Find Full Text PDFThis paper introduces VHR-PRO_IT (Very High-Resolution PROjections for ITaly), an open access hourly climate projection with a resolution of ≃2.2 km (i.e.
View Article and Find Full Text PDFHistorically, visceral leishmaniasis (VL) in Italy was constrained to Mediterranean areas. However, in the last 20 years, sand fly vectors and human cases of VL have been detected in northern Italy, traditionally classified as a cold area unsuitable for sand fly survival. We aim to study the spatio-temporal pattern and climatic determinants of VL incidence in Italy.
View Article and Find Full Text PDFBackground: Understanding context specific heat-health risks in urban areas is important, especially given anticipated severe increases in summer temperatures due to climate change effects. We investigate social inequalities in the association between daily temperatures and mortality in summer in the city of Turin for the period 1982-2018 among different social and demographic groups such as sex, age, educational level, marital status and household occupants.
Methods: Mortality data are represented by individual all-cause mortality counts for the summer months between 1982 and 2018.