Publications by authors named "Paola Massari"

() is the most common cause of bacterial sexually transmitted infections (STIs) worldwide. infections are often asymptomatic in women, leading to severe reproductive tract sequelae. Development of a vaccine against is crucial.

View Article and Find Full Text PDF

Gonorrhea, a sexually transmitted disease caused by , poses a significant global public health threat. Infection in women can be asymptomatic and may result in severe reproductive complications. Escalating antibiotic resistance underscores the need for an effective vaccine.

View Article and Find Full Text PDF

is rapidly developing antimicrobial resistance. There is an urgent need for an effective gonococcal vaccine. In this study we examined epidemiological and clinical factors associated with gonorrhea in a cohort of women exposed to men with gonococcal urethritis attending the National Center for STD Control clinic in Nanjing, China, to understand the natural history and the risk factors for gonorrhea in this vulnerable population.

View Article and Find Full Text PDF

is the most frequently detected sexually transmitted bacterial pathogen in the world. Attempts to control these infections with screening programs and antibiotics have failed and, therefore, a vaccine is the best approach to control this epidemic. The major outer membrane protein (MOMP) is the most protective subunit vaccine so far tested.

View Article and Find Full Text PDF

Background: Gonorrhea, caused by the bacterium Neisseria gonorrhoeae, is a globally prevalent sexually transmitted infection. The dynamics of gonococcal population biology have been poorly defined due to a lack of resolution in strain typing methods.

Methods: In this study, we assess how the core genome can be used to improve our understanding of gonococcal population structure compared with current typing schemes.

View Article and Find Full Text PDF

is a Gram-negative diplococcus that is responsible for the sexually transmitted infection gonorrhea, a high-morbidity disease in the United States and worldwide. Over the past several years, strains resistant to antibiotics used to treat this infection have begun to emerge across the globe. Thus, new treatment strategies are needed to combat this organism.

View Article and Find Full Text PDF

There is an increasingly severe trend of antibiotic-resistant strains worldwide and new therapeutic strategies are needed against this sexually-transmitted pathogen. Despite the urgency, progress towards a gonococcal vaccine has been slowed by a scarcity of suitable antigens, lack of correlates of protection in humans and limited animal models of infection. gene expression levels in the natural human host does not reflect expression in vitro, further complicating in vitro-basedvaccine analysis platforms.

View Article and Find Full Text PDF

causes the sexually transmitted disease gonorrhea exclusively in humans and uses multiple strategies to infect, including acquisition of host sialic acids that cap and mask lipooligosaccharide termini, while restricting complement activation. We hypothesized that gonococci selectively target human anti-inflammatory sialic acid-recognizing Siglec receptors on innate immune cells to blunt host responses and that pro-inflammatory Siglecs and pseudogene polymorphisms represent host evolutionary adaptations to counteract this interaction. can indeed engage multiple human but not chimpanzee CD33rSiglecs expressed on innate immune cells and in the genitourinary tract--including Siglec-11 (inhibitory) and Siglec-16 (activating), which we detected for the first time on human cervical epithelium.

View Article and Find Full Text PDF

is a bacterial pathogen responsible for the sexually transmitted infection gonorrhea. Emergence of antimicrobial resistance (AMR) of worldwide has resulted in limited therapeutic choices for this infection. Men who seek treatment often have symptomatic urethritis; in contrast, gonococcal cervicitis in women is usually minimally symptomatic, but may progress to pelvic inflammatory disease.

View Article and Find Full Text PDF

is the most common cause of bacterial sexually transmitted infections worldwide. While infections resolve with antibiotic treatment, this is often neglected in women due to frequent asymptomatic infections, leading to disease progression and severe sequelae (pelvic inflammatory disease, ectopic pregnancy, infertility). Development of a vaccine against is crucial.

View Article and Find Full Text PDF

Neisseria gonorrhoeae is one of the most prevalent sexually transmitted infections worldwide. This obligate human pathogen has been extensively studied in vitro, where bacterial factors that are known to contribute to gonococcal disease and their regulation are relatively well defined. However, these in vitro experimental conditions only loosely replicate the host specific environment encountered by the bacteria in vivo.

View Article and Find Full Text PDF

Neisseria meningitidis (NM) is an opportunistic gram-negative human pathogen that colonizes the human nasopharyngeal epithelium. Asymptomatic carriage is common, but some meningococcal strains can invade nasopharyngeal epithelial cells and proceed to cause severe and often fatal infections. Invasion is predominantly driven by expression of bacterial virulence factors and host cell cognate receptors for bacterial recognition.

View Article and Find Full Text PDF

PorB is a pan-Neisserial major outer membrane protein with a trimeric β-barrel structure. Each monomer presents eight periplasmic turns and eight surface exposed loop regions with sequence variability. PorB induces activation of host cell responses via a TLR2-dependent mechanism likely mediated by electrostatic interactions between TLR2 and PorB surface exposed loops.

View Article and Find Full Text PDF

Gonorrhea is a highly prevalent disease resulting in significant morbidity worldwide, with an estimated 106 cases reported annually. Neisseria gonorrhoeae, the causative agent of gonorrhea, colonizes and infects the human genital tract and often evades host immune mechanisms until successful antibiotic treatment is used. The alarming increase in antibiotic-resistant strains of N.

View Article and Find Full Text PDF

Several bacterial pathogens persist and survive in the host by modulating host cell death pathways. We previously demonstrated that Neisseria gonorrhoeae, a Gram-negative pathogen responsible for the sexually transmitted infection gonorrhea, protects against exogenous induction of apoptosis in human cervical epithelial cells. However, induction of cell death by N.

View Article and Find Full Text PDF

Bacterial porins are major outer membrane proteins that function as essential solute transporters between the bacteria and the extracellular environment. Structural features of porins are also recognized by eukaryotic cell receptors involved in innate and adaptive immunity. To better investigate the function of porins, proper refolding is necessary following purification from inclusion bodies [1, 2].

View Article and Find Full Text PDF

Toll-like receptor (TLR) signaling represents one of the best studied pathways to implement defense mechanisms against invading microbes in human being as well as in animals. TLRs respond to specific microbial ligands and to danger signals produced by the host during infection, and initiate downstream cascades that activate both innate and adaptive immunity. TLRs are expressed by professional immune cells and by the large majority of non-hematopoietic cells, including epithelial cells.

View Article and Find Full Text PDF

Vaccine efficacy is optimized by addition of immune adjuvants. However, although adjuvants have been used for over a century, to date, only few adjuvants are approved for human use, mostly aimed at improving vaccine efficacy and antigen-specific protective antibody production. The mechanism of action of immune adjuvants is diverse, depending on their chemical and molecular nature, ranging from non-specific effects (i.

View Article and Find Full Text PDF

Among all Neisseriae species, Neisseria meningitidis and Neisseria gonorrhoeae are the only human pathogens, causative agents of bacterial meningitis and gonorrhoea, respectively. PorB, a pan-Neisseriae trimeric porin that mediates diffusive transport of essential molecules across the bacterial outer membrane, is also known to activate host innate immunity via Toll-like receptor 2 (TLR2)-mediated signaling. The molecular mechanism of PorB binding to TLR2 is not known, but it has been hypothesized that electrostatic interactions contribute to ligand/receptor binding.

View Article and Find Full Text PDF

Vaccines play a vital role in modern medicine. The development of novel vaccines for emerging and resistant pathogens has been aided in recent years by the use of novel adjuvants in subunit vaccines. A deeper understanding of the molecular pathways behind adjuvanticity is required to better select immunostimulatory molecules for use in individual vaccines.

View Article and Find Full Text PDF

Vaccines formulated with the Chlamydia muridarum native major outer membrane protein (nMOMP) have so far been shown to elicit the most robust protection against this pathogen. nMOMP is a membrane protein and therefore, detergents are used to keep it in solution. Detergents however, have toxic effects.

View Article and Find Full Text PDF

Monitoring cytokine release by cells allows the investigation of cellular response to specific external stimuli, such as pathogens or candidate drugs. Unlike conventional colorimetric techniques, label-free detection of cytokines enables studying cellular secretions in real time by eliminating additional wash and labeling steps after the binding step. However, label-free techniques that are based on measuring mass accumulation on a sensor surface are challenging for measuring small cytokines binding to much larger capture agents (usually antibodies) because the relative signal change is small.

View Article and Find Full Text PDF

Porphyromonas gingivalis is a primary etiological agent of chronic periodontal disease, an infection-driven chronic inflammatory disease that leads to the resorption of tooth-supporting alveolar bone. We previously reported that TLR2 is required for P. gingivalis-induced alveolar bone loss in vivo, and our in vitro work implicated TNF as a key downstream mediator.

View Article and Find Full Text PDF

Chlamydia trachomatis is the most common sexually transmitted bacterial pathogen and the etiologic agent of blinding trachoma. Intracellular signaling pathways leading to host cell inflammation and innate immunity to Chlamydia include those mediated by Toll-like receptors (TLRs) and nucleotide binding oligomerization domain 1 (Nod1) protein. In epithelial cells, TLR-dependent signaling contributes to local immune responses via induction of inflammatory mediators.

View Article and Find Full Text PDF