Publications by authors named "Paola Larghi"

Myeloid-derived suppressor cells (MDSC) include immature monocytic (M-MDSC) and granulocytic (PMN-MDSC) cells that share the ability to suppress adaptive immunity and to hinder the effectiveness of anticancer treatments. Of note, in response to IFNγ, M-MDSCs release the tumor-promoting and immunosuppressive molecule nitric oxide (NO), whereas macrophages largely express antitumor properties. Investigating these opposing activities, we found that tumor-derived prostaglandin E2 (PGE2) induces nuclear accumulation of p50 NF-κB in M-MDSCs, diverting their response to IFNγ toward NO-mediated immunosuppression and reducing TNFα expression.

View Article and Find Full Text PDF

Whether human IL-10-producing regulatory T cells ("Tr1") represent a distinct differentiation lineage or an unstable activation stage remains a key unsolved issue. Here, we report that Eomesodermin (Eomes) acted as a lineage-defining transcription factor in human IFN-γ/IL-10 coproducing Tr1-like cells. In vivo occurring Tr1-like cells expressed Eomes, and were clearly distinct from all other CD4 T-cell subsets, including conventional cytotoxic CD4 T cells.

View Article and Find Full Text PDF

Objectives: B cells play an important role in the initiation and progression of systemic lupus erythematosus (SLE). Accordingly, B cell-targeted therapy has been suggested as a new rational approach for treating lupus. Belimumab, a human monoclonal antibody directed against B lymphocyte stimulator (BLyS), was reported as the first biological treatment effective in reducing mild-to-moderate SLE disease activity by using different scoring systems and endpoints.

View Article and Find Full Text PDF

Background: IL-10 is an anti-inflammatory cytokine required for intestinal immune homeostasis. It mediates suppression of T-cell responses by type 1 regulatory T (T1) cells but is also produced by CD25 regulatory T (Treg) cells.

Objective: We aimed to identify and characterize human intestinal T1 cells and to investigate whether they are a relevant cellular source of IL-10 in patients with inflammatory bowel diseases (IBDs).

View Article and Find Full Text PDF

Background: The aim was to investigate CD4T-cell subsets, immune cells and their cytokine profiles in blood and synovial compartments in rheumatoid arthritis (RA) and inflammatory osteoarthritis (OA) to define specific immune signatures.

Methods: Peripheral blood, synovial fluid (SF) and synovial membranes (SM) of RA and OA patients were analyzed. CD4T-cell subset frequencies were determined by flow cytometry, and cytokine concentrations in serum and SF were measured by ELISA.

View Article and Find Full Text PDF

In T lymphocytes, the immune synapse is an active zone of vesicular traffic. Directional transport of vesicular receptors and signaling molecules from or to the immune synapse has been shown to play an important role in T-cell receptor (TCR) signal transduction. However, how vesicular trafficking is regulating the activation of T cells is still a burning question, and the characterization of these intracellular compartments remains the first step to understand this process.

View Article and Find Full Text PDF

Background: Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS) that is caused by autoreactive T cells and associated with viral infections. However, the phenotype of pathogenic T cells in peripheral blood remains to be defined, and how viruses promote MS is debated.

Objective: We aimed to identify and characterize potentially pathogenic autoreactive T cells, as well as protective antiviral T cells, in patients with MS.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSC) are multipotent cells able to differentiate into several cell types, hence providing cell reservoirs for therapeutic applications. The absence of detectable MSC homing at injury sites suggests that paracrine functions could, at least in part, be mediated by extracellular vesicles (EVs); EVs are newly identified players that are studied mainly as predictive or diagnostic biomarkers. Together with their clinical interests, EVs have recently come to the fore for their role in cell-to-cell communication.

View Article and Find Full Text PDF

Antigen-recognition by T cells requires the physical association with an antigen presenting cell (APC). At the interface between a T cell and an APC, the orchestrated redistribution of lipids, membrane receptors, and intracellular adaptors assembles a highly specialized junction, controlling the communication between the two cells, named the immunologic synapse (IS). The proper organization of the IS is a key step in host defense.

View Article and Find Full Text PDF

Th17 cells are a heterogeneous population of pro-inflammatory T cells that have been shown to mediate immune responses against intestinal bacteria. Th17 cells are highly plastic and can transdifferentiate to Th1/17 cells or unconventional Th1 cells, which are highly pathogenic in animal models of immune-mediated diseases such as inflammatory bowel diseases. A recent European Journal of Immunology article by Liu et al.

View Article and Find Full Text PDF

Objectives: To provide a functional and phenotypic characterization of immune cells infiltrating small intestinal mucosa during non-IPEX autoimmune enteropathy (AIE), as to gain insights on the pathogenesis of this clinical condition.

Methods: Duodenal biopsies from a patient with AIE at baseline and following drug-induced remission were analyzed by immunohistochemistry, immunofluorescence, and flow cytometry, and results were compared with those obtained from patients with active celiac disease, ileal Crohn's disease and healthy controls. Lamina propria (LP) and intraepithelial (IELs) lymphocytes from AIE and controls were analyzed for mechanisms regulating cytokine production.

View Article and Find Full Text PDF

IL-10 is an anti-inflammatory cytokine that inhibits maturation and cytokine production of dendritic cells (DCs). Although mature DCs have the unique capacity to prime CD8(+) CTL, IL-10 can promote CTL responses. To understand these paradoxic findings, we analyzed the role of IL-10 produced by human APC subsets in T-cell responses.

View Article and Find Full Text PDF

Interleukin-10 (IL-10) is known to be a tolerogenic cytokine since it inhibits pro-inflammatory cytokine production and T cell stimulatory capacities of myeloid cells, such as macrophages and dendritic cells. In particular, it has a non-redundant tolerogenic role in intestinal immune homeostasis, since mice and patients with genetic defects in the IL-10/IL-10R pathway develop spontaneously colitis in the presence of a normal intestinal flora. However, IL-10 is also a growth and differentiation factor for B-cells, can promote autoantibody production and has consequently a pathogenic role in systemic lupus erythematosus.

View Article and Find Full Text PDF

Interleukin-12 (IL-12), produced by dendritic cells in response to activation, is central to pathogen eradication and tumor rejection. The trafficking pathways controlling spatial distribution and intracellular transport of IL-12 vesicles to the cell surface are still unknown. Here, we show that intracellular IL-12 localizes in late endocytic vesicles marked by the SNARE VAMP7.

View Article and Find Full Text PDF

Dendritic cells (DCs) are specialized antigen-presenting cells (APCs) that have a key role in immune responses because they bridge the innate and adaptive arms of the immune system. They mature upon recognition of pathogens and upregulate MHC molecules and costimulatory receptors to activate antigen-specific CD4(+) and CD8(+) T cells. It is now well established that DCs are not a homogeneous population but are composed of different subsets with specialized functions in immune responses to specific pathogens.

View Article and Find Full Text PDF

CD31, a trans-homophilic inhibitory receptor expressed on both T- and B-lymphocytes, drives the mutual detachment of interacting leukocytes. Intriguingly, T cell CD31 molecules relocate to the immunological synapse (IS), where the T and B cells establish a stable interaction. Here, we show that intact CD31 molecules, which are able to drive an inhibitory signal, are concentrated at the periphery of the IS but are excluded from the center of the IS.

View Article and Find Full Text PDF

The mechanisms by which Lat (a key adaptor in the T cell antigen receptor (TCR) signaling pathway) and the TCR come together after TCR triggering are not well understood. We investigate here the role of SNARE proteins, which are part of protein complexes involved in the docking, priming and fusion of vesicles with opposing membranes, in this process. Here we found, by silencing approaches and genetically modified mice, that the vesicular SNARE VAMP7 was required for the recruitment of Lat-containing vesicles to TCR-activation sites.

View Article and Find Full Text PDF

Dendritic cells play a central role in keeping the balance between immunity and immune tolerance. A key factor in this equilibrium is the lifespan of DC, as its reduction restrains antigen availability leading to termination of immune responses. Here we show that lipopolysaccharide-driven DC maturation is paralleled by increased nuclear levels of p50 NF-κB, an event associated with DC apoptosis.

View Article and Find Full Text PDF

Several experimental and epidemiological evidence indicate that, irrespective of the trigger for the development (chronic infection/inflammation or genetic alteration), a "smouldering" inflammation is associated with the most of, if not all, tumours and supports their progression. Several evidence have highlighted that tumours promote a constant influx of myelomonocytic cells that express inflammatory mediators supporting pro-tumoral functions. Myelomonocytic cells are key orchestrators of cancer-related inflammation associated with proliferation and survival of malignant cells, subversion of adaptive immune response, angiogenesis, stroma remodelling and metastasis formation.

View Article and Find Full Text PDF
Article Synopsis
  • Dendritic cells (DCs) are essential immune cells that detect danger signals and help activate specific immune responses, also involved in inflammation and tissue repair.
  • Oxygen levels are crucial for proper differentiation and maturation of DCs; low oxygen (hypoxia) disrupts their ability to express key markers and stimulate T-cells, while also impairing their movement to lymph nodes.
  • Hypoxia leads to increased production of certain inflammatory cytokines, which enhances local inflammation but hinders DCs from migrating to draining lymph nodes, suggesting a protective mechanism to prevent excessive immune reactions in damaged tissues.
View Article and Find Full Text PDF

Salmonella typhimurium is a facultative anaerobic bacterium able to multiply preferentially in tumors and inhibit their growth. The mechanisms through which Salmonella exerts its anti-cancer properties are not fully understood. We recently showed that intra-tumoral Salmonella injection results not only in the regression of even bulky tumor masses, but also impacts on the growth of distant untreated lesions.

View Article and Find Full Text PDF

Macrophages are a fundamental part of the innate defense mechanisms, which can promote specific immunity by inducing T cell recruitment and activation. Despite this, their presence within the tumour microenvironment has been associated with enhanced tumour progression and shown to promote cancer cell growth and spread, angiogenesis and immunosuppression. This paradoxical role of macrophages in cancer finds an explanation in their functional plasticity, that may result in the polarized expression of either pro- or anti-tumoural functions.

View Article and Find Full Text PDF

Clinical and experimental evidence have highlighted that a major leukocyte population present in tumours, the so-called tumour-associated macrophages (TAM), is the principal component of the leukocyte infiltrate supporting tumour growth. Over the years the mechanisms supporting the protumoural functions of TAM have become increasingly clear and in several experimental tumour models, the activation of an inflammatory response (most frequently mediated by macrophages) has been shown to play an essential role for full neoplastic transformation and progression. This evidence strongly supports the idea that TAM are central orchestrators of the inflammatory networks expressed in the tumour microenvironment, and suggest these cells as possible targets of anticancer therapies.

View Article and Find Full Text PDF

Recent years have seen a renaissance of the inflammation-cancer connection stemming from different lines of work and leading to a generally accepted paradigm (Balkwill and Mantovani 2001; Mantovani et al. 2002; Coussens and Werb 2002; Balkwill et al. 2005).

View Article and Find Full Text PDF

Dendritic cells (DCs) are able to open the tight junctions between adjacent epithelial cells (ECs) and to take up both invasive and noninvasive bacteria directly from the intestinal lumen. In this study, we describe a tight cross talk between ECs and human monocyte-derived DCs (MoDCs) in bacterial handling across epithelial monolayers. We show that the release of proinflammatory mediators by ECs in response to bacteria is dependent on bacterial invasiveness and on the presence of flagella.

View Article and Find Full Text PDF