Blood flow modulates endothelial cell (EC) response during angiogenesis. Shear stress is known to control gene expression related to the endothelial-mesenchymal transition and endothelial-hematopoietic transition. However, the impact of blood flow on the cellular processes associated with EC extrusion is less well understood.
View Article and Find Full Text PDFOrganogenesis involves extensive and dynamic changes of tissue shape during development. It is associated with complex morphogenetic events that require enormous tissue plasticity and generate a large variety of transient three-dimensional geometries that are achieved by global tissue responses. Nevertheless, such global responses are driven by tight spatio-temporal regulation of the behaviours of individual cells composing these tissues.
View Article and Find Full Text PDFDuring embryogenesis, cells undergo dynamic changes in cell behavior, and deciphering the cellular logic behind these changes is a fundamental goal in the field of developmental biology. The discovery and development of photoconvertible proteins have greatly aided our understanding of these dynamic changes by providing a method to optically highlight cells and tissues. However, while photoconversion, time-lapse microscopy, and subsequent image analysis have proven to be very successful in uncovering cellular dynamics in organs such as the brain or the eye, this approach is generally not used in the developing heart due to challenges posed by the rapid movement of the heart during the cardiac cycle.
View Article and Find Full Text PDF