Publications by authors named "Paola Falletta"

Nuclear factors rapidly scan the genome for their targets, but the role of nuclear organization in such search is uncharted. Here we analyzed how multiple factors explore chromatin, combining live-cell single-molecule tracking with multifocal structured illumination of DNA density. We find that factors displaying higher bound fractions sample DNA-dense regions more exhaustively.

View Article and Find Full Text PDF

Neratinib (NE) is an irreversible pan-ERBB tyrosine kinase inhibitor used to treat breast cancers (BCa) with amplification of the ERBB2/HER2/Neu gene or overexpression of the ERBB2 receptor. However, the mechanisms behind this process are not fully understood. Here we investigated the effects of NE on critical cell survival processes in ERBB2 cancer cells.

View Article and Find Full Text PDF

Melanoma is a complex and aggressive cancer type that contains different cell subpopulations displaying distinct phenotypes within the same tumor. Metabolic reprogramming, a hallmark of cell transformation, is essential for melanoma cells to adopt different phenotypic states necessary for adaptation to changes arising from a dynamic milieu and oncogenic mutations. Increasing evidence demonstrates how melanoma cells can exhibit distinct metabolic profiles depending on their specific phenotype, allowing adaptation to hostile microenvironmental conditions, such as hypoxia or nutrient depletion.

View Article and Find Full Text PDF

In recent years considerable progress has been made in identifying the impact of mRNA translation in tumour progression. Cancer cells hijack the pre-existing translation machinery to thrive under the adverse conditions originating from intrinsic oncogenic programs, that increase their energetic demand, and from the hostile microenvironment. A key translation program frequently dysregulated in cancer is the Integrated Stress Response, that reprograms translation by attenuating global protein synthesis to decrease metabolic demand while increasing translation of specific mRNAs that support survival, migration, immune escape.

View Article and Find Full Text PDF

Dormancy, a reversible quiescent cellular state characterized by greatly reduced metabolic activity, protects from genetic damage, prolongs survival and is crucial for tissue homeostasis and cellular response to injury or transplantation. Dormant cells have been characterized in many tissues, but their identification, isolation and characterization irrespective of tissue of origin remains elusive. Here, we develop a live cell ratiometric fluorescent Optical Stem Cell Activity Reporter (OSCAR) based on the observation that phosphorylation of RNA Polymerase II (RNApII), a hallmark of active mRNA transcription elongation, is largely absent in dormant stem cells from multiple lineages.

View Article and Find Full Text PDF

Phenotypic and metabolic heterogeneity within tumors is a major barrier to effective cancer therapy. How metabolism is implicated in specific phenotypes and whether lineage-restricted mechanisms control key metabolic vulnerabilities remain poorly understood. In melanoma, downregulation of the lineage addiction oncogene microphthalmia-associated transcription factor (MITF) is a hallmark of the proliferative-to-invasive phenotype switch, although how MITF promotes proliferation and suppresses invasion is poorly defined.

View Article and Find Full Text PDF
Article Synopsis
  • - Melanoma cells adapt to their changing environment by showing different phenotypic states tied to the expression of the MITF protein, which is influenced by factors responding to low oxygen levels (hypoxia).
  • - During hypoxia, HIF1α plays a critical role in regulating MITF, which in turn affects the expression of certain genes, including those involved in blood vessel formation like VEGFA.
  • - The study finds that while there is a common set of 23 genes affected by hypoxia across different melanoma cell lines, MITF has a unique function in the cells' metabolic processes and can repress its own expression to manage the response to hypoxic conditions.
View Article and Find Full Text PDF

Whether cell types exposed to a high level of environmental insults possess cell type-specific prosurvival mechanisms or enhanced DNA damage repair capacity is not well understood. BRN2 is a tissue-restricted POU domain transcription factor implicated in neural development and several cancers. In melanoma, BRN2 plays a key role in promoting invasion and regulating proliferation.

View Article and Find Full Text PDF

The intratumor microenvironment generates phenotypically distinct but interconvertible malignant cell subpopulations that fuel metastatic spread and therapeutic resistance. Whether different microenvironmental cues impose invasive or therapy-resistant phenotypes via a common mechanism is unknown. In melanoma, low expression of the lineage survival oncogene microphthalmia-associated transcription factor (MITF) correlates with invasion, senescence, and drug resistance.

View Article and Find Full Text PDF

Little is known as to how cells ensure that organelle size and number are coordinated to correctly couple organelle biogenesis to the demands of proliferation or differentiation. OA1 is a melanosome-associated G-protein-coupled receptor involved in melanosome biogenesis during melanocyte differentiation. Cells lacking OA1 contain fewer, but larger, mature melanosomes.

View Article and Find Full Text PDF

Deregulation of transcription arising from mutations in key signaling pathways is a hallmark of cancer. In melanoma, the most aggressive and lethal form of skin cancer, the Brn-2 transcription factor (POU3F2) regulates proliferation and invasiveness and lies downstream from mitogen-activated protein kinase (MAPK) and Wnt/β-catenin, two melanoma-associated signaling pathways. In vivo Brn-2 represses expression of the microphthalmia-associated transcription factor, MITF, to drive cells to a more stem cell-like and invasive phenotype.

View Article and Find Full Text PDF