Critical reagents (CR) are applied in ligand binding assays (LBA) and biotinylation is a widely conjugation method used for critical reagents. However, insufficient characterization and inconsistent biotinylation can lead to LBA failures and necessitate extensive troubleshooting. This publication developed the detection of biotinylated CR and evaluates efficiency of biotinylation conditions to ensure the reliability of reagents and accuracy when implemented in LBA.
View Article and Find Full Text PDFLysine specific demethylase 1 (LSD1; also known as KDM1A), is an epigenetic modulator that modifies the histone methylation status. KDM1A forms a part of protein complexes that regulate the expression of genes involved in the onset and progression of diseases such as cancer, central nervous system (CNS) disorders, viral infections, and others. Vafidemstat (ORY-2001) is a clinical stage inhibitor of KDM1A in development for the treatment of neurodegenerative and psychiatric diseases.
View Article and Find Full Text PDFLysine-specific demethylase 1 (LSD1 or KDM1A) is a chromatin modifying enzyme playing a key role in the cell cycle and cell differentiation and proliferation through the demethylation of histones and nonhistone substrates. In addition to its enzymatic activity, LSD1 plays a fundamental scaffolding role as part of transcription silencing complexes such as rest co-repressor (CoREST) and nucleosome remodeling and deacetylase (NuRD). A host of classical amine oxidase inhibitors such as tranylcypromine, pargyline, and phenelzine together with LSD1 tool compounds such as SP-2509 and GSK-LSD1 have been extensively utilized in LSD1 mechanistic cancer studies.
View Article and Find Full Text PDFLSD1 is a lysine demethylase highly involved in initiation and development of cancer. To design highly effective covalent inhibitors, a strategy is to fill its large catalytic cleft by designing tranylcypromine (TCP) analogs decorated with long, hindered substituents. We prepared three series of TCP analogs, carrying aroyl- and arylacetylamino (1 a-h), Z-amino acylamino (2 a-o), or double-substituted benzamide (3 a-n) residues at the C4 or C3 position of the phenyl ring.
View Article and Find Full Text PDFBackground: Histone lysine demethylases (KDMs) are well-recognized targets in oncology drug discovery. They function at the post-translation level controlling chromatin conformation and gene transcription. KDM1A is a flavin adenine dinucleotide-dependent amine oxidase, overexpressed in several tumor types, including acute myeloid leukemia, neuroblastoma and non-small-cell lung cancer.
View Article and Find Full Text PDFThe balance of methylation levels at histone H3 lysine 4 (H3K4) is regulated by KDM1A (LSD1). KDM1A is overexpressed in several tumor types, thus representing an emerging target for the development of novel cancer therapeutics. We have previously described ( Part 1, DOI 10.
View Article and Find Full Text PDFLysine specific demethylase 1 KDM1A (LSD1) regulates histone methylation and it is increasingly recognized as a potential therapeutic target in oncology. We report on a high-throughput screening campaign performed on KDM1A/CoREST, using a time-resolved fluorescence resonance energy transfer (TR-FRET) technology, to identify reversible inhibitors. The screening led to 115 hits for which we determined biochemical IC, thus identifying four chemical series.
View Article and Find Full Text PDFWe report the stereoselective synthesis and biological activity of a novel series of tranylcypromine (TCPA) derivatives (14a-k, 15, 16), potent inhibitors of KDM1A. The new compounds strongly inhibit the clonogenic potential of acute leukemia cell lines. In particular three molecules (14d, 14e, and 14g) showing selectivity versus MAO A and remarkably inhibiting colony formation in THP-1 human leukemia cells, were assessed in mouse for their preliminary pharmacokinetic.
View Article and Find Full Text PDFThe pure enantiomers of the N-(2-, 3-, and 4-(2-aminocyclopropyl)phenyl)benzamides hydrochlorides 11a-j were prepared and tested against LSD1 and MAO enzymes. The evaluation of the regioisomers 11a-j highlighted a net increase of the anti-LSD1 potency by shifting the benzamide moiety from ortho to meta and mainly to para position of tranylcypromine phenyl ring, independently from their trans or cis stereochemistry. In particular, the para-substituted 11a,b (trans) and 11g,h (cis) compounds displayed LSD1 and MAO-A inhibition at low nanomolar levels, while were less potent against MAO-B.
View Article and Find Full Text PDFThe pure four diastereomers (11a-d) of trans-benzyl (1-((4-(2-aminocyclopropyl)phenyl)amino)-1-oxo-3-phenylpropan-2-yl)carbamate hydrochloride 11, previously described by us as LSD1 inhibitor, were obtained by enantiospecific synthesis/chiral HPLC separation method. Tested in LSD1 and MAO assays, 11b (S,1S,2R) and 11d (R,1S,2R) were the most potent isomers against LSD1 and were less active against MAO-A and practically inactive against MAO-B. In cells, all the four diastereomers induced Gfi-1b and ITGAM gene expression in NB4 cells, accordingly with their LSD1 inhibition, and 11b and 11d inhibited the colony forming potential in murine promyelocytic blasts.
View Article and Find Full Text PDFEpigenetics alterations including histone methylation and acetylation, and DNA methylation, are thought to play important roles in the onset and progression of cancer in numerous tumour cell lines. Lysine-specific demethylase 1 (LSD1 or KDM1A) is highly expressed in different cancer types and inhibiting KDM1A activity seems to have high therapeutic potential in cancer treatment. In the recent years, several inhibitors of KDM1A have been prepared and disclosed.
View Article and Find Full Text PDFHistone demethylase KDM1A (also known as LSD1) has become an attractive therapeutic target for the treatment of cancer as well as other disorders such as viral infections. We report on the synthesis of compounds derived from the expansion of tranylcypromine as a chemical scaffold for the design of novel demethylase inhibitors. These compounds, which are substituted on the cyclopropyl core moiety, were evaluated for their ability to inhibit KDM1A in vitro as well as to function in cells by modulating the expression of Gfi-1b, a well recognized KDM1A target gene.
View Article and Find Full Text PDFActa Crystallogr D Biol Crystallogr
March 2012
Purine nucleoside phosphorylases catalyze the phosphorolytic cleavage of the glycosidic bond of purine (2'-deoxy)nucleosides, generating the corresponding free base and (2'-deoxy)-ribose 1-phosphate. Two classes of PNPs have been identified: homotrimers specific for 6-oxopurines and homohexamers that accept both 6-oxopurines and 6-aminopurines. Bacillus cereus adenosine phosphorylase (AdoP) is a hexameric PNP; however, it is highly specific for 6-aminopurines.
View Article and Find Full Text PDF