The use of a higher dose per fraction to overcome the high radioresistance of prostate cancer cells has been unsuccessfully proposed. Herein, we present PC3 and DU-145, castration-resistant prostate cancer cell lines that survived a clinically used ultra-higher dose per fraction, namely, radioresistant PC3 and DU-145 cells (PC3RR and DU-145RR). Compared to PC3, PC3RR showed a higher level of aggressive behaviour, with enhanced clonogenic potential, DNA damage repair, migration ability and cancer stem cell features.
View Article and Find Full Text PDFIn comparison with normal cells, cancer cells are equipped with a higher number of lysosomes, involved in degradative and non-degradative roles. In particular, the lysosome is a Casignalling hub, and the enhancement of this interconnected machinery in cancer cells has recently prompted investigations into the role that lysosomal ion channels play in oncology. The present review reports findings about the emerging role of lysosomal Cachannels: Two-Pore Channels (TPCs), Transient Receptor Potential Cation Channels (TRPMLs; mucolipins), and Purinergic X Receptor 4 (P2×4R), in a variety of cancer models, highlighting their impact on crucial functions such as the regulation of autophagy and the composition of the tumour microenvironment, including the secretion-mediated interplay with immune and endothelial cells.
View Article and Find Full Text PDFObjective: Bone metastasis is a clinically important outcome of prostate carcinoma (PC). We focused on the phenotypic and functional characterization of a particularly aggressive phenotype within the androgen-independent bone metastasis-derived PC3 cell line. These cells, originated from the spontaneous conversion of a CD44-negative subpopulation, stably express the CD44v8-10 isoform (CD44v8-10) and display stem cell-like features and a marked invasive phenotype that is lost upon CD44v8-10 silencing.
View Article and Find Full Text PDFBackground/aim: Hypoxia-inducible factor 1 (HIF1) inhibitors have been proposed as therapeutic agents for several tumor types. HIF1α is induced by hypoxia and by pathogens in normoxia through toll-like receptors (TLRs). The TLR3 activator polyinosinic:polycytidylic acid [poly(I:C)] induces apoptosis in various types of cancer but not in the most aggressive breast cancer cell lines.
View Article and Find Full Text PDFIn the recent years thousands of non-coding RNAs have been identified, also thanks to highthroughput sequencing technologies. Among them, circular RNAs (circRNAs) are a well-represented class characterized by the high sequence conservation and cell type specific expression in eukaryotes. They are covalently closed loops formed through back-splicing.
View Article and Find Full Text PDFRadiation therapy (RT), by using ionizing radiation (IR), destroys cancer cells inducing DNA damage. Despite several studies are continuously performed to identify the best curative dose of IR, the role of dose-rate, IR delivered per unit of time, on tumor control is still largely unknown. Rhabdomyosarcoma (RMS) and prostate cancer (PCa) cell lines were irradiated with 2 or 10 Gy delivered at dose-rates of 1.
View Article and Find Full Text PDFIn human prostate cancer (PCa), the neuroendocrine cells, expressing the prostate cancer stem cell (CSC) marker CD44, may be resistant to androgen ablation and promote tumor recurrence. During the study of heterogeneity of the highly aggressive neuroendocrine PCa cell lines PC3 and DU-145, we isolated and expanded a minor subpopulation of very small cells lacking CD44 (CD44). Unexpectedly, these sorted CD44 cells rapidly and spontaneously converted to a stable CD44 phenotype specifically expressing the CD44v8-10 isoform which the sorted CD44 subpopulation failed to express.
View Article and Find Full Text PDFAdherent/invasive Escherichia coli (AIEC) strains have recently been receiving increased attention because they are more prevalent and persistent in the intestine of Crohn's disease (CD) patients than in healthy subjects. Since AIEC strains show a high percentage of similarity to extraintestinal pathogenic E. coli (ExPEC), neonatal meningitis-associated E.
View Article and Find Full Text PDFDespite the effectiveness of surgery or radiation therapy for the treatment of early-stage prostate cancer (PCa), there is currently no effective strategy for late-stage disease. New therapeutic targets are emerging; in particular, dsRNA receptors Toll-like receptor 3 (TLR3) and cytosolic helicases expressed by cancer cells, once activated, exert a pro-apoptotic effect in different tumors. We previously demonstrated that the synthetic analog of dsRNA poly(I:C) induces apoptosis in the androgen-dependent PCa cell line LNCaP in a TLR3-dependent fashion, whereas only a weak apoptotic effect is observed in the more aggressive and androgen-independent PCa cells PC3 and DU145.
View Article and Find Full Text PDFToll-like receptors (TLRs) are a family of highly conserved transmembrane proteins expressed in epithelial and immune cells that recognize pathogen associated molecular patterns. Besides their role in immune response against infections, numerous studies have shown an important role of different TLRs in cancer, indicating these receptors as potential targets for cancer therapy. We previously demonstrated that the activation of TLR3 by the synthetic double-stranded RNA analogue poly I:C induces apoptosis of androgen-sensitive prostate cancer (PCa) LNCaP cells and, much less efficiently, of the more aggressive PC3 cell line.
View Article and Find Full Text PDFFOXP3(+) regulatory T cells (Tregs) are central to the maintenance of immunological homeostasis and tolerance. It has long been known that Sertoli cells are endowed with immune suppressive properties; however, the underlying mechanisms as well as the effective nature and role of soluble factors secreted by Sertoli cells have not been fully elucidated as yet. We hypothesized that conditioned medium from primary mouse Sertoli cells (SCCM) may be able and sufficient to induce Tregs.
View Article and Find Full Text PDFToll-Like receptors (TLRs) are a family of evolutionary conserved transmembrane proteins that recognize highly conserved molecules in pathogens. TLR-expressing cells represent the first line of defence sensing pathogen invasion, triggering innate immune responses and subsequently priming antigen-specific adaptive immunity. In vitro and in vivo studies on experimental cancer models have shown both anti- and pro-tumoural activity of different TLRs in prostate cancer, indicating these receptors as potential targets for cancer therapy.
View Article and Find Full Text PDFToll-like receptors (TLRs) recognize microbial/viral-derived components that trigger innate immune response and conflicting data implicate TLR agonists in cancer, either as protumor or antitumor agents. We previously demonstrated that TLR3 activation mediated by its agonist poly(I:C) induces antitumor signaling, leading to apoptosis of prostate cancer cells LNCaP and PC3 with much more efficiency in the former than in the second more aggressive line. The transcription factor hypoxia-inducible factor 1 (HIF-1) regulates several cellular processes, including apoptosis, in response to hypoxia and to other stimuli also in normoxic conditions.
View Article and Find Full Text PDFTLRs boost antimicrobial response mechanisms by epithelial cells and represent the first line of defense at mucosal sites. In view of these immunomodulatory properties, TLR stimulation may represent a novel means to activate anticancer immune responses. In the present study, the ability of TLR ligands to affect the recruitment of different immune cell populations by human prostate cancer cell lines and the underlying mechanisms were investigated.
View Article and Find Full Text PDFThe highly polarized structure and function of mammalian spermatozoa dictate that these cells compartmentalize specific metabolic and signaling pathways to regions where they are needed. Fas was initially identified as membrane receptor for pro-apoptotic signals, has been recently recognized as a molecule with pleiotropic functions. In this article, we provide evidence of a peculiar Fas localization: it is closely associated to the perinucleus, mainly at the level of the inner acrosomal membrane, as well as in the inner compartment of mitochondria.
View Article and Find Full Text PDFToll-like receptors (TLRs) recognize pathogen-associated molecular patterns and elicit antimicrobial immune responses. In the testis, viruses can induce pathological conditions, such as orchitis, and may participate in the etiology of testicular cancer; however, the molecular mechanisms involved remain under investigation. It has been suggested that because they constitutively express interferon (IFN)-inducible antiviral proteins, Sertoli cells participate in the testicular antiviral defense system.
View Article and Find Full Text PDFToll-like receptors (TLRs) are known to play a key role in the innate immune system particularly in inflammatory response against invading pathogens. Recent reports strongly indicate that they play important roles in cancer cells. Prostate cancer represents one of the most common cancer for which no cure is available once metastatic and androgen refractory.
View Article and Find Full Text PDFObjective: Activation of Fas signaling has been associated with the development of cardiomyocyte hypertrophy. In the present study, we investigated the effects of increased expression of c-Flip, a natural modulator of Fas receptor signaling, in a mouse model of cardiac growth response to pressure overload.
Methods: A transgenic mouse overexpressing c-Flip in the heart was generated in FVB/N strain.
When chronically stimulated with agonists of contraction, smooth muscle cells (SMCs) undergo cell hypertrophy, a process defined as increase in size and potentiation of the contractile phenotype in the absence of proliferation. Hypertrophic response has long been associated to a number of pathologies of the cardiovascular and respiratory systems. We have investigated the phenotypic and functional response of SMCs to long-term treatment with endothelin.
View Article and Find Full Text PDFTLRs play a crucial role in early host defense against invading pathogens. In the seminiferous epithelium, Sertoli cells are the somatic nurse cells that mechanically segregate germ cell autoantigens by means of the blood-tubular barrier and create a microenvironment that protects germ cells from both interstitial and ascending invading pathogens. The objective of this study was to examine TLR expression and their functional responses to specific agonists in mouse Sertoli cells.
View Article and Find Full Text PDFApoptosis represents a fundamental process during fetal/post-natal testis development. Therefore pro- and anti-apoptotic proteins are essential to regulate testis physiology. c-Flip(L) is a known inhibitor of caspase 8/10 activity; in this study its perinatal expression in mouse male germ cells was investigated.
View Article and Find Full Text PDFMol Cancer
December 2005
Background: p21WAF1, implicated in the cell cycle control of both normal and malignant cells, can be induced by p53-dependent and independent mechanisms. In some cells, MEKs/ERKs regulate p21WAF1 transcriptionally, while in others they also affect the post-transcriptional processes. In myogenic differentiation, p21WAF1 expression is also controlled by the myogenic transcription factor MyoD.
View Article and Find Full Text PDFPeritubular smooth muscle cells (PSMC) from rat testis in primary serum-free cultures unexpectedly undergo contraction and subsequent cell hypertrophy in response to the growth factor PDGF-BB, remaining stationary. The present study investigates the transduction pathways involved in the observed paradoxical upregulation of the differentiated phenotype and induction of hypertrophy in PSMC. PI3K, ERK, JNK, and p38 kinases, known to mediate PDGF-BB signaling in the canonic dedifferentiative and proliferative response of smooth muscle cells (SMC) were rapidly activated by PDGF-BB but only p38 remained activated after 2-day stimulation.
View Article and Find Full Text PDFApoptosis is a key mechanism in spermatogenesis, and in testis, most gonocytes degenerate at fetal and postnatal ages to select a cell subset committed to become germ stem cells. The aim of the present study is to investigate mechanisms controlling the massive apoptosis of fetal gonocytes. We evaluated the expression and function of c-Flip, an apoptosis inhibitor known to interfere with the proapoptotic Fas-signaling pathway in a variety of cell types, but never investigated in fetal testis.
View Article and Find Full Text PDFThe aim of the present study was to investigate the expression and role of c-Flip long isoform (c-FlipL), a known anti-apoptotic protein. No data are currently available on c-FlipL in male gonad before puberty; therefore, this study was carried out in prepuberal mouse testis. We investigated pachytene spermatocytes and spermatogonia by immunostaining of testis sections and found a strong and specific expression of c-FlipL in pachytene spermatocytes, while spermatogonia expressed very low levels of c-FlipL.
View Article and Find Full Text PDF