Publications by authors named "Paola D Pajevic"

Frailty in aging is driven by the dysregulation of multiple biological pathways. Protectin DX (PDX) is a docosahexaenoic acid (DHA)-derived molecule that alleviates many chronic inflammatory disorders, but its potential effects on frailty remain unknown. Our goal is to identify age-related impairments in metabolic systems and to evaluate the therapeutic potential of PDX on frailty, physical performance, and health parameters.

View Article and Find Full Text PDF

Aging is accompanied by osteopenia, characterized by reduced bone formation and increased bone resorption. Osteocytes, the terminally differentiated osteoblasts, are regulators of bone homeostasis, and parathyroid hormone (PTH) receptor (PPR) signaling in mature osteoblasts/osteocytes is essential for PTH-driven anabolic and catabolic skeletal responses. However, the role of PPR signaling in those cells during aging has not been investigated.

View Article and Find Full Text PDF

Osteocytes remodel the perilacunar matrix and canaliculi. X-linked hypophosphatemia (XLH) is characterized by elevated serum levels of fibroblast growth factor 23 (FGF23), leading to decreased 1,25 dihydroxyvitamin D3 (1,25D) production and hypophosphatemia. Bones from mice with XLH (Hyp) have enlarged osteocyte lacunae, enhanced osteocyte expression of genes of bone remodeling, and impaired canalicular structure.

View Article and Find Full Text PDF

There is mounting evidence suggesting that the commonly used analgesics, non-steroidal anti-inflammatory drugs (NSAIDs), may inhibit new bone formation with physical training and increase risk of stress fractures in physically active populations. Stress fractures are thought to occur when bones are subjected to repetitive mechanical loading, which can lead to a cycle of tissue microdamage, repair, and continued mechanical loading until fracture. Adaptive bone formation, particularly on the periosteal surface of long bones, is a concurrent adaptive response of bone to heightened mechanical loading that can improve the fatigue resistance of the skeletal structure, and therefore may play a critical role in offsetting the risk of stress fracture.

View Article and Find Full Text PDF
Article Synopsis
  • Osteocytes are specialized bone cells that detect mechanical stress through changes in fluid flow, influencing bone formation by regulating Sclerostin (Sost) levels.
  • The study identifies class IIa histone deacetylases (HDAC4 and HDAC5) as crucial for suppressing Sost expression in response to mechanical loading, linking mechanotransduction to new bone development.
  • Focal adhesion kinase (FAK) plays a key role in this process by phosphorylating HDAC5, affecting its movement within the cell and ultimately regulating gene expression related to bone structure.
View Article and Find Full Text PDF

Introduction: Disuse-induced bone loss is caused by a suppression of osteoblastic bone formation and an increase in osteoclastic bone resorption. There are few data available for the effects of environmental conditions, i.e.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers found that glycerol-3-phosphate (G-3-P) in the renal veins is strongly linked to FGF23 levels, and in mice, G-3-P stimulates FGF23 production by promoting a specific chemical process that involves lysophosphatidic acid (LPA).
  • * Conditions like acute kidney injury (AKI) not only raise FGF23 levels but also lead to a quick increase in G-3-P, suggesting that targeting this pathway could help manage FGF23 production
View Article and Find Full Text PDF

Diabetic bone disease is a complication of type I and type II diabetes, both of which are increasing in the United States and elsewhere. Increased hip and foot fracture rates do not correlate well with changes in bone mineral density (BMD), whereas studies support the importance of collagen structure to bone strength. Extracellular lysyl oxidase (LOX) catalyzes the oxidative deamination of hydroxylysine and lysine residues in collagens resulting in aldehydes that subsequently form critically important biosynthetic crosslinks that stabilize functional collagens.

View Article and Find Full Text PDF

Vitamin K antagonists (VKAs) have been used in 1% of the world's population for prophylaxis or treatment of thromboembolic events for 64 years. Impairment of osteoblast function and osteoporosis has been described in patients receiving VKAs. Given the involvement of cells of the bone marrow microenvironment (BMM), such as mesenchymal stem cells (MSCs) and macrophages, as well as other factors such as the extracellular matrix for the maintenance of normal hematopoietic stem cells (HSCs), we investigated a possible effect of VKAs on hematopoiesis via the BMM.

View Article and Find Full Text PDF

Osteoporosis is caused by increased bone resorption and decreased bone formation. Intermittent administration of a fragment of Parathyroid hormone (PTH) activates osteoblast-mediated bone formation and is used in patients with severe osteoporosis. However, the mechanisms by which PTH elicits its anabolic effect are not fully elucidated.

View Article and Find Full Text PDF

The retinoid X receptors (RXR), peroxisome proliferator activated receptor gamma (PPARγ), and liver X receptors (LXR) all have been shown to regulate bone homeostasis. Tributyltin (TBT) is an environmental contaminant that is a dual RXRα/β and PPARγ agonist. TBT induces RXR, PPARγ, and LXR-mediated gene transcription and suppresses osteoblast differentiation in vitro.

View Article and Find Full Text PDF

Osteocytes are master orchestrators of bone remodeling; they control osteoblast and osteoclast activities both directly cell-to-cell communication and indirectly secreted factors, and they are the main postnatal source of sclerostin and RANKL (receptor activator of NF-kB ligand), two regulators of osteoblast and osteoclast function. Despite progress in understanding osteocyte biology and function, much remains to be elucidated. Recently developed osteocytic cell lines-together with new genome editing tools-has allowed a closer look at the biology and molecular makeup of these cells.

View Article and Find Full Text PDF

Purpose Of Review: Over the past decades, osteocytes have emerged as mechano-sensors of bone and master regulators of bone homeostasis. This article summarizes latest research and progress made in understanding osteocyte mechanobiology and critically reviews tools currently available to study these cells.

Recent Findings: Whereas increased mechanical forces promote bone formation, decrease loading is always associated with bone loss and skeletal fragility.

View Article and Find Full Text PDF

It is generally accepted that bone and muscle possess the capacity to act in an autocrine, paracrine, or endocrine manner, with a growing body of evidence that suggests muscle can secrete muscle specific cytokines or "myokines", which influence bone metabolism. However, there has been little investigation into the identity of bone specific cytokines that modulate skeletal muscle differentiation and function. This study aimed to elucidate the influence of osteocytes on muscle progenitor cells in vitro and to identify potential bone specific cytokines or "osteokines".

View Article and Find Full Text PDF

Cells of the osteoblast lineage provide critical support for B lymphopoiesis in the bone marrow (BM). Parathyroid hormone (PTH) signaling in osteoblastic cells through its receptor (PPR) is an important regulator of hematopoietic stem cells; however, its role in regulation of B lymphopoiesis is not clear. Here we demonstrate that deletion of PPR in osteoprogenitors results in a significant loss of trabecular and cortical bone.

View Article and Find Full Text PDF

Although bone responds to its mechanical environment, the cellular and molecular mechanisms underlying the response of the skeleton to mechanical unloading are not completely understood. Osteocytes are the most abundant but least understood cells in bones and are thought to be responsible for sensing stresses and strains in bone. Sclerostin, a product of the SOST gene, is produced postnatally primarily by osteocytes and is a negative regulator of bone formation.

View Article and Find Full Text PDF

Osteocytes secrete paracrine factors that regulate the balance between bone formation and destruction. Among these molecules, sclerostin (encoded by the gene SOST) inhibits osteoblastic bone formation and is an osteoporosis drug target. The molecular mechanisms underlying SOST expression remain largely unexplored.

View Article and Find Full Text PDF

In humans, aging and glucocorticoid treatment are associated with reduced bone mass and increased marrow adiposity, suggesting that the differentiation of osteoblasts and adipocytes may be coordinately regulated. Within the bone marrow, both osteoblasts and adipocytes are derived from mesenchymal progenitor cells, but the mechanisms guiding the commitment of mesenchymal progenitors into osteoblast versus adipocyte lineages are not fully defined. The heterotrimeric G protein subunit Gs α activates protein kinase A signaling downstream of several G protein-coupled receptors including the parathyroid hormone receptor, and plays a crucial role in regulating bone mass.

View Article and Find Full Text PDF

Parathyroid hormone (PTH) is the only Food and Drug Administration-approved anabolic agent to treat osteoporosis; however, the cellular targets of PTH action in bone remain controversial. PTH modulates bone turnover by binding to the PTH/PTH-related peptide (PTHrP) type 1 receptor (PPR), a G-protein-coupled receptor highly expressed in bone and kidneys. Osteocytes, the most abundant cells in adult bone, also express PPR.

View Article and Find Full Text PDF

Emerging evidence suggests that fibroblast growth factor 23 (FGF23) levels are elevated in patients with acute kidney injury (AKI). In order to determine how early this increase occurs, we used a murine folic acid-induced nephropathy model and found that plasma FGF23 levels increased significantly from baseline already after 1 h of AKI, with an 18-fold increase at 24 h. Similar elevations of FGF23 levels were found when AKI was induced in mice with osteocyte-specific parathyroid hormone receptor ablation or the global deletion of parathyroid hormone or the vitamin D receptor, indicating that the increase in FGF23 was independent of parathyroid hormone and vitamin D signaling.

View Article and Find Full Text PDF

The last decade has seen an impressive expansion of our understanding of the role of osteocytes in skeletal homeostasis. These amazing cells, deeply embedded into the mineralized matrix, are the key regulators of bone homeostasis and skeletal mechano sensation and transduction. They are the cells that can sense the mechanical forces applied to the bone and then translate these forces into biological responses.

View Article and Find Full Text PDF

Osteocytes are ideally positioned to detect and respond to mechanical and hormonal stimuli and to coordinate the function of osteoblasts and osteoclasts. However, evidence supporting the involvement of osteocytes in specific aspects of skeletal biology has been limited mainly due to the lack of suitable experimental approaches. Few crucial advances in the field in the past several years have markedly increased our understanding of the function of osteocytes.

View Article and Find Full Text PDF

Intermittent administration of parathyroid hormone (PTH) increases bone mass, at least in part, by increasing the number of osteoblasts. One possible source of osteoblasts might be conversion of inactive lining cells to osteoblasts, and indirect evidence is consistent with this hypothesis. To better understand the possible effect of PTH on lining cell activation, a lineage tracing study was conducted using an inducible gene system.

View Article and Find Full Text PDF

Osteoclasts are thought to be solely responsible for the removal of bone matrix. However, we show here that osteocytes can also remove bone matrix by reversibly remodeling their perilacunar/canalicular matrix during the reproductive cycle. In contrast, no osteocytic remodeling was observed with experimental unloading despite similar degrees of bone loss.

View Article and Find Full Text PDF

Parathyroid hormone (PTH) is a major physiologic regulator of calcium, phosphorous, and skeletal homeostasis. Cells of the osteoblastic lineage are key targets of PTH action in bone, and recent evidence suggests that osteocytes might be important in the anabolic effects of PTH. To understand the role of PTH signaling through the PTH/PTHrP receptors (PPR) in osteocytes and to determine the role(s) of these cells in mediating the effects of the hormone, we have generated mice in which PPR expression is specifically ablated in osteocytes.

View Article and Find Full Text PDF