Unlabelled: This study aimed to develop a noninvasive Machine Learning (ML) model to identify clinically significant prostate cancer (csPCa) according to Gleason Score (GS) based on biparametric MRI (bpMRI) radiomic features and clinical information.
Methods: This retrospective study included 86 adult Hispanic men (60 ± 8.2 years, median prostate-specific antigen density (PSA-D) 0.
Background: Breast cancer is the most frequently diagnosed and leading cause of cancer-related deaths among females. The treatment of breast cancer with radiotherapy, albeit effective, has been shown to be toxic to the heart, resulting in an elevated risk of cardiovascular disease and associated fatalities.
Methods: In this study, we evaluated the impact of respiratory movement, treatment plans and dose calculation algorithm on the dose delivered to the heart and its substructures during left breast radiotherapy over a cohort of 10 patients.
Poor radiotherapy outcome is in many cases related to hypoxia, due to the increased radioresistance of hypoxic tumour cells. Positron emission tomography may be used to non-invasively assess the oxygenation status of the tumour using hypoxia-specific radiotracers. Quantification and interpretation of these images remains challenging, since radiotracer binding and oxygen tension are not uniquely related.
View Article and Find Full Text PDFPurpose: The purpose of this study was to present a parallel solution for the EGSnrc Monte Carlo code system combining MPI and OpenMP programming models as an alternative to the provided implementation, based on the use of a batch-queueing system (BQS).
Methods: Relying on a previous implementation based on OpenMP by E. Doerner and P.
Purpose: To present the implementation of a new option for parallel processing of the EGSnrc Monte Carlo system using the OpenMP API, as an alternative to the provided method based on the use of a batch queuing system (BQS).
Methods: The parallel solution presented, called OMP_EGS, makes use of OpenMP features to control the workload distribution between the compute units. These features were inserted into the original EGSnrc source code through properly defined macros.
The aim of the guideline presented in this article is to unify the test parameters for image quality evaluation and radiation output in all types of cone-beam computed tomography (CBCT) systems. The applications of CBCT spread over dental and interventional radiology, guided surgery and radiotherapy. The chosen tests provide the means to objectively evaluate the performance and monitor the constancy of the imaging chain.
View Article and Find Full Text PDFThe shape of the radiation source of a linac has a direct impact on the delivered dose distributions, especially in the case of small radiation fields. Traditionally, a single Gaussian source model is used to describe the electron beam hitting the target, although different studies have shown that the shape of the electron source can be better described by a mixed distribution consisting of two Gaussian components. Therefore, this study presents the implementation of a double Gaussian source model into the BEAMnrc Monte Carlo code.
View Article and Find Full Text PDFHelical TomoTherapy® is a radiation delivery technique that uses the superposition of many small fields to precisely deliver the prescribed dose to the patient. This work presents a dose verification tool that can be used as part of a quality assurance program for a tomotherapy system. This tool is based on a small field model that takes into account the two main effects that influence the dose distribution in small fields: the extended shape of the radiation source and the loss of lateral charged particle equilibrium (CPE) within the field.
View Article and Find Full Text PDFTotal skin electron irradiation (TSEI) has been used as a treatment for mycosis fungoides. Our center has implemented a modified Stanford technique with six pairs of 6 MeV adjacent electron beams, incident perpendicularly on the patient who remains lying on a translational platform, at 200 cm from the source. The purpose of this study is to perform a dosimetric characterization of this technique and to investigate its optimization in terms of energy characteristics, extension, and uniformity of the treatment field.
View Article and Find Full Text PDFThe characteristics of the thermoluminescence glow curve and dosimetric peak of LiF:Mg,Ti (TLD-100) crystals are studied, with emphasis on the evaluation of the influence of the irradiation dose and heating rate on the dosimetric peak (peak 5) trapping parameters. These parameters were obtained using a computerized deconvolution routine that assumed first-order kinetics for each peak composing the glow curve. This routine was able to fit accurately (1.
View Article and Find Full Text PDFWe used the two available calculation algorithms of the Varian Eclipse 7.3 three-dimensional (3D) treatment planning system (TPS), the anisotropic analytic algorithm (AAA) and pencil-beam convolution (PBC), to compare measured and calculated two-dimensional enhanced dynamic wedge (2D EDW) dose distributions, plus implementation of the dynamic wedge into the TPS. Measurements were carried out for a 6-MV photon beam produced with a Clinac 2300C/D linear accelerator equipped with EDW, using ionization chambers for beam axis measurements and films for dose distributions.
View Article and Find Full Text PDF