Cell Host Microbe
December 2024
Fungal-bacterial endosymbioses, the most intimate typology of symbioses, have been described in different taxa of Mucoromycota, an early diverging group of Fungi. In a recent issue of Nature, Giger and colleagues describe how they implanted a Burkolderia-related microbe inside a Mucoromycota fungus, giving rise to a functional and stable endosymbiosis.
View Article and Find Full Text PDFThe cell and molecular bases of arbuscular mycorrhizal (AM) symbiosis, a crucial plant-fungal interaction for nutrient acquisition, have been extensively investigated by coupling traditional RNA sequencing techniques of roots sampled in bulk, with methods to capture subsets of cells such as laser microdissection. These approaches have revealed central regulators of this complex relationship, yet the requisite level of detail to effectively untangle the intricacies of temporal and spatial development remains elusive.The recent adoption of single-cell RNA sequencing (scRNA-seq) techniques in plant research is revolutionizing our ability to dissect the intricate transcriptional profiles of plant-microbe interactions, offering unparalleled insights into the diversity and dynamics of individual cells during symbiosis.
View Article and Find Full Text PDFThe association between plants and arbuscular mycorrhizal fungi (AMF) affects plant performance and ecosystem functioning. Recent studies have identified AMF-associated bacteria as cooperative partners that participate in AMF-plant symbiosis: specific endobacteria live inside AMF, and hyphospheric bacteria colonize the soil that surrounds the extraradical hyphae. In this Review, we describe the concept of a plant-AMF-bacterium continuum, summarize current advances and provide perspectives on soil microbiology.
View Article and Find Full Text PDFTo understand whether domestication had an impact on susceptibility and responsiveness to arbuscular mycorrhizal fungi (AMF) in tomato (Solanum lycopersicum), we investigated two tomato cultivars ("M82" and "Moneymaker") and a panel of wild relatives including S. neorickii, S. habrochaites and S.
View Article and Find Full Text PDFArbuscular mycorrhizal fungi (AMF) have accompanied the majority of land plants since their evolution in the Devonian period with a symbiotic alliance centered on nutrient exchanges. The exploration of AMF genomes is providing clues to explain major questions about their biology, evolution, and ecology. The dynamics of nuclei across the fungal life cycle, the abundance of transposable elements, and the epigenome landscape are emerging as sources of intraspecific variability, which can be especially important in organisms with no or rare sexual reproduction such as AMF.
View Article and Find Full Text PDFSalvioli di Fossalunga and Bonfante introduce how arbuscular mycorrhizal fungi can be applied as biofertilizers.
View Article and Find Full Text PDFCoffee is one of the most traded commodities world-wide. As with 70% of land plants, coffee is associated with arbuscular mycorrhizal (AM) fungi, but the molecular bases of this interaction are unknown. We studied the mycorrhizal phenotype of two commercially important Coffea arabica cultivars ('Typica National' and 'Catimor Amarillo'), upon Funnelliformis mosseae colonisation grown under phosphorus limitation, using an integrated functional approach based on multi-omics, physiology and biochemistry.
View Article and Find Full Text PDFThe beneficial symbiosis between plants and arbuscular mycorrhizal (AM) fungi leads to a deep reprogramming of plant metabolism, involving the regulation of several molecular mechanisms, many of which are poorly characterized. In this regard, proteomics is a powerful tool to explore changes related to plant-microbe interactions. This study provides a comprehensive proteomic meta-analysis conducted on AM-modulated proteins at local (roots) and systemic (shoots/leaves) level.
View Article and Find Full Text PDFMetagenomics approaches have revealed the importance of Mucoromycota in the evolution and functioning of plant microbiomes. Comprised of three subphyla (Glomeromycotina, Mortierellomycotina, and Mucoromycotina), this early diverging lineage of fungi encompasses species of mycorrhizal fungi, root endophytes, plant pathogens, and many decomposers of plant debris. Interestingly, several taxa of Mucoromycota share a common feature, that is, the presence of endobacteria within their mycelia and spores.
View Article and Find Full Text PDFThe Oryza sativa (rice) carotenoid cleavage dioxygenase OsZAS was described to produce zaxinone, a plant growth-promoting apocarotenoid. A zas mutant line showed reduced arbuscular mycorrhizal (AM) colonization, but the mechanisms underlying this behavior are unknown. Here, we investigated how OsZAS and exogenous zaxinone treatment regulate mycorrhization.
View Article and Find Full Text PDFis a cosmopolitan arbuscular mycorrhizal fungus, which - as an obligate symbiont- requires being associated to a host plant to accomplish its life cycle. It is characterized by huge white spores, the development of extraradical auxiliary cells, and the lack of intraradical vesicles. Its genome is dominated by transposable elements and is one of the largest fungal genomes so far sequenced.
View Article and Find Full Text PDFAs other arbuscular mycorrhizal fungi, Gigaspora margarita contains unculturable endobacteria in its cytoplasm. A cured fungal line has been obtained and showed it was capable of establishing a successful mycorrhizal colonization. However, previous OMICs and physiological analyses have demonstrated that the cured fungus is impaired in some functions during the pre-symbiotic phase, leading to a lower respiration activity, lower ATP, and antioxidant production.
View Article and Find Full Text PDFRoot hair cells form the primary interface of plants with the soil environment, playing key roles in nutrient uptake and plant defense. In legumes, they are typically the first cells to become infected by nitrogen-fixing soil bacteria during root nodule symbiosis. Here, we report a role for the CELLULOSE SYNTHASE-LIKE D1 (CSLD1) gene in root hair development in the legume species Lotus japonicus.
View Article and Find Full Text PDFPlants growing in nature live in association with beneficial, commensal, and pathogenic microbes, which make up the plant microbiota. The close interaction between plants and their microbiotas has raised fundamental questions about plant responses to these microbes and the identity of the main factors driving microbiota structure, diversity, and function in bulk soil, in the rhizosphere, and in the plant organs. Beneficial microorganisms have long been used as inoculants for crops; the current development of synthetic microbial communities and the identification of plant traits that respond to the microbiota form the basis for rational engineering of the plant microbiota to improve sustainable agriculture.
View Article and Find Full Text PDFPlants rely on their microbiota for improving the nutritional status and environmental stress tolerance. Previous studies mainly focused on bipartite interactions (a plant challenged by a single microbe), while plant responses to multiple microbes have received limited attention. Here, we investigated local and systemic changes induced in wheat by two plant growth-promoting bacteria (PGPB), Azospirillum brasilense and Paraburkholderia graminis, either alone or together with an arbuscular mycorrhizal fungus (AMF).
View Article and Find Full Text PDFAs obligate biotrophic symbionts, arbuscular mycorrhizal fungi (AMF) live in association with most land plants. Among them, has been deeply investigated because of its peculiar features, i.e.
View Article and Find Full Text PDFZaxinone is an apocarotenoid regulatory metabolite required for normal rice growth and development. In addition, zaxinone has a large application potential in agriculture, due to its growth-promoting activity and capability to alleviate infestation by the root parasitic plant Striga through decreasing strigolactone (SL) production. However, zaxinone is poorly accessible to the scientific community because of its laborious organic synthesis that impedes its further investigation and utilization.
View Article and Find Full Text PDFFEMS Microbiol Ecol
September 2020
Microbial communities associated with plants are greatly influenced by water availability in soil. In flooded crops, such as rice, the impact of water management on microbial dynamics is not fully understood. Here, we present a comprehensive study of the rice microbiota investigated in an experimental field located in one of the most productive areas of northern Italy.
View Article and Find Full Text PDFMycorrhizas are among the most important biological interkingdom interactions, as they involve ~340,000 land plants and ~50,000 taxa of soil fungi. In these mutually beneficial interactions, fungi receive photosynthesis-derived carbon and provide the host plant with mineral nutrients such as phosphorus and nitrogen in exchange. More than 150 years of research on mycorrhizas has raised awareness of their biology, biodiversity and ecological impact.
View Article and Find Full Text PDFAs members of the plant microbiota, arbuscular mycorrhizal fungi (AMF) may be effective in enhancing plant resilience to drought, one of the major limiting factors threatening crop productivity. AMF host their own microbiota and previous data demonstrated that endobacteria thriving in modulate fungal antioxidant responses. Here, we used the - Glomeribacter gigasporarum system to test whether the tripartite interaction between tomato, and its endobacteria may improve plant resilience to combined water/nutrient stress.
View Article and Find Full Text PDFRNA-seq is a powerful method for transcriptome profiling that allows the detection of total RNA present in a single cell, tissues, or organs. mRNA-seq is focused on protein-coding RNAs, and results in large datasets of reads, or portion of sequenced mRNA that can be assembled back to the original transcripts to reconstruct a virtual gene catalog. Studies on the biology of arbuscular mycorrhizal fungi (AMF) often took great advantage of mRNA-seq, and several attempts to decipher their coding potential relied on de novo transcriptome assembly.
View Article and Find Full Text PDF