The incidence of nonalcoholic fatty liver disease (NAFLD) has been steadily increasing in Western society in recent years and has been recognized as a risk factor for the development of hepatocellular carcinoma (HCC). However, the molecular mechanisms underlying the progression from NAFLD to HCC are still unclear, despite the use of suitable mouse models. To identify the transcriptional and lipid profiles of livers from mice with NAFLD-HCC, we induced both NAFLD and NAFLD-HCC pathologies in C57BL/6J mice and performed RNA-sequencing (RNA-seq) and targeted lipidomic analysis.
View Article and Find Full Text PDFIntroduction: Metabolic dysfunction-associated fatty liver disease (MAFLD) has emerged as the leading cause of hepatocellular carcinoma (HCC) worldwide. Over the years, Perilipin 5 (PLIN5) has been recognized as a key regulator of both MAFLD and HCC development. In our previous studies we demonstrated that deficiency in reduces the severity of MAFLD and HCC in mice.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
April 2024
The 25 kDa-sized protein Lipocalin 2 (LCN2) was originally isolated from human neutrophil granulocytes more than 30 years ago. LCN2 is an emerging player in innate immune defense, as it reduces bacterial growth due to its ability to sequester iron-containing bacterial siderophores. On the other hand, LCN2 also serves as a transporter for various hydrophobic substances due to its β-barrel shaped structure.
View Article and Find Full Text PDFThe molecular mechanisms underlying the transition from nonalcoholic fatty liver disease (NAFLD) to hepatocellular carcinoma (HCC) are incompletely understood. During the development of NAFLD, Perilipin 5 (PLIN5) can regulate lipid metabolism by suppressing lipolysis and preventing lipotoxicity. Other reports suggest that the lack of PLIN5 decreases hepatic injury, indicating a protective role in NAFLD pathology.
View Article and Find Full Text PDFPerilipin 5 (PLIN5) is a lipid droplet coat protein that is highly expressed in oxidative tissues such as those of muscles, the heart and the liver. PLIN5 expression is regulated by a family of peroxisome proliferator-activated receptors (PPARs) and modulated by the cellular lipid status. So far, research has focused on the role of PLIN5 in the context of non-alcoholic fatty liver disease (NAFLD) and specifically in lipid droplet formation and lipolysis, where PLIN5 serves as a regulator of lipid metabolism.
View Article and Find Full Text PDFConsumption of high-calorie foods, such as diets rich in fats, is an important factor leading to the development of steatohepatitis. Several studies have suggested how lipid accumulation creates a lipotoxic microenvironment for cells, leading cells to deregulate their transcriptional and translational activity. This deregulation induces the development of liver diseases such as non-alcoholic fatty liver disease (NAFLD) and subsequently also the appearance of hepatocellular carcinoma (HCC) which is one of the deadliest types of cancers worldwide.
View Article and Find Full Text PDFExcess calorie intake and a sedentary lifestyle have made non-alcoholic fatty liver disease (NAFLD) one of the fastest growing forms of liver disease of the modern world. It is characterized by abnormal accumulation of fat in the liver and can range from simple steatosis and non-alcoholic steatohepatitis (NASH) to cirrhosis as well as development of hepatocellular carcinoma (HCC). Biopsy is the golden standard for the diagnosis and differentiation of all NAFLD stages, but its invasiveness poses a risk for patients, which is why new, non-invasive ways of diagnostics ought to be discovered.
View Article and Find Full Text PDF