ACS Appl Mater Interfaces
March 2022
Nowadays, a wide number of applications based on magnetic materials rely on the properties arising at the interface between different layers in complex heterostructures engineered at the nanoscale. In ferromagnetic/heavy metal multilayers, such as the [Co/Pt] and [Co/Pd] systems, the magnetic proximity effect was demonstrated to be asymmetric, thus inducing a magnetic moment on the Pt (Pd) layer that is typically higher at the top Co/Pt(Pd) interface. In this work, advanced spectroscopic and imaging techniques were combined with theoretical approaches to clarify the origin of this asymmetry both in Co/Pt trilayers and, for the first time, in multilayer systems that are more relevant for practical applications.
View Article and Find Full Text PDFThe electronic energy levels of cyclo(glycine-phenylalanine), cyclo(tryptophan-tyrosine) and cyclo(tryptophan-tryptophan) dipeptides are investigated with a joint experimental and theoretical approach. Experimentally, valence photoelectron spectra in the gas phase are measured using VUV radiation. Theoretically, we first obtain low-energy conformers through an automated conformer-rotamer ensemble sampling scheme based on tight-binding simulations.
View Article and Find Full Text PDFWe have investigated the formation and the properties of ultrathin films of ruthenium phthalocyanine (RuPc) vacuum deposited on graphite by scanning tunneling microscopy and synchrotron photoemission spectroscopy measurements, interpreted in close conjunction with ab initio simulations. Thanks to its unique dimeric structure connected by a direct Ru-Ru bond, (RuPc) can be found in two stable rotameric forms separated by a low-energy barrier. Such isomerism leads to a peculiar organization of the molecules in flat, horizontal layers on the graphite surface, characterized by a chessboard-like alternation of the two rotamers.
View Article and Find Full Text PDFA number of studies have investigated the properties of monomeric and double-decker phthalocyanines (Pcs) adsorbed on metal surfaces, in view of applications in spintronics devices. In a combined experimental and theoretical study, we consider here a different member of the Pcs family, the (RuPc) dimer, whose structure is characterized by two paired up magnetic centers embedded in a double-decker architecture. For (RuPc) on Ag(111), we show that this architecture works as a preserving cage by shielding the Ru-Ru pair from a direct interaction with the surface atoms.
View Article and Find Full Text PDFThe stability and magnetic properties of Fe clusters in the (Ga,Fe)N magnetic semiconductor is investigated by using first-principles density functional theory and local spin density+Hubbard U theoretical methods. The present results reveal the existence of ferrimagnetic clusters formed by three or four peripheral Fe atoms neighboring a central Fe atom acting as a robust magnetic anchoring point. These clusters have magnetic moments 2 or 3 times that of a single Fe atom and, when connected by sharing peripheral Fe atoms, can form stable, ordered magnetic regions where all of the central atoms are ferromagnetically coupled.
View Article and Find Full Text PDFThe formation of pseudoepitaxial transrotational structures has been observed during the early stage of the reaction of thin Ni layers on [001] Si substrates. During the reaction, large Ni(2)Si domains, characterized by single bending contours, establish a close relationship with the silicon lattice. The silicide domain consists of a core region, along the bending contour, where the silicide layer has grown epitaxially with silicon.
View Article and Find Full Text PDF