Publications by authors named "Paola A Cardenas"

Boldenone (BOL) has been frequently detected in doping and food safety over the past few decades. Researchers have studied BOL metabolism across various species, reporting significant differences even within the same species due to variations in experimental designs and analytical methods. Additionally, detection methods face challenges such as matrix interferences and the presence of endogenous structural analogs at low concentrations.

View Article and Find Full Text PDF

This study aims to evaluated the impact of poly(ε-caprolactone) (PCL) microspheres on the pharmacokinetics and pharmacodynamics (PopPK/PD) of 6-methylcoumarin (6MC). For this, PCL microspheres loaded with 6MC were prepared using the emulsification-evaporation method. Particle size, zeta potential, drug loading, and entrapment efficiency were characterised by dynamic light scattering and UV spectrophotometry.

View Article and Find Full Text PDF

Background: Botanical drugs contain plant extracts, which are complex mixtures of compounds. As with conventional drugs, it is necessary to validate their efficacy and safety through preclinical and clinical studies. However, pharmacokinetic studies for active constituents or characteristic markers in botanical drugs are rare.

View Article and Find Full Text PDF

In this study, we applied a gradient High-Speed Counter-Current Chromatography (HSCCC) method that allowed, by direct injection of an aqueous crude extract of the leaves of Passiflora bogotensis, the successful isolation of six flavonoids in a single run, with purity of each compound higher than 81%. This separation enabled the isolation of two new flavonoid glycosides, apigenin-6-C-α-l-rhamnopyranosyl-(1→2)-(6″-O-acetyl)-β-d-glucopyranoside (2) and luteolin-6-C-α-l-rhamnopyranosyl-(1→2)-(6″-O-acetyl)-β-d-glucopyranoside (4), and four known ones, isovitexin (1), isoorientin (3), isovitexin-2″-O-rhamnoside (5) and isoorientin-2″-O-rhamnoside (6). The structures of the isolated compounds were identified by HPLC-DAD, LC-MS, (1)H and (13)C NMR and comparison with literature data.

View Article and Find Full Text PDF