We report that high-Mg calcite spherulites can undergo a coarsening process to form calcareous spicules of ∼30 microns in width and several hundred microns in length after an aging process in air for a prolonged period. During the aging process, the crystallinity of the calcitic structure has been improved substantially with a significant migration of Mg ions toward the mineral surface. In a thin-foil sample of the spicule aged for 20 months, nanocrystallites of magnesite with minor substitution level of Ca ions have been found near the surface of the spicule.
View Article and Find Full Text PDFAmorphous calcium carbonate (ACC) is an important precursor phase of biogenic calcite. In this work, an in situ Ca L-edge X-ray absorption spectroscopic study has been carried out to monitor the phase transformation process of hydrated ACC from room temperature to 773 K in the presence of water vapor pressure at 0.4 mbar.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2017
Mesocrystals of high-magnesian calcites are commonly found in biogenic calcites. Under ambient conditions, it remains challenging to prepare mesocrystals of high-magnesian calcite in aqueous solution. We report that mesocrystals of calcite with magnesium content of about 20 mol % can be obtained from the phase transformation of magnesian amorphous calcium carbonate (Mg-ACC) in lipid solution.
View Article and Find Full Text PDFIn shark teeth we have identified the species fluorapatite, hydroxyfluorapatite and its defect site, calcium fluoride, and potassium fluoride. Their relative amounts in teeth at different development stages have been quantified. Calcium fluoride and potassium fluoride may be associated with the fluoridation mechanism in shark teeth.
View Article and Find Full Text PDF