A simple electrochemical sensor was developed to determine the concentration of Ca in meat. Graphene was treated with oxygen plasma for 10 s and 30 s comparing with the pristine graphene. Through analyzing morphology and chemical composition, the graphene with the lowest defect density was chosen to mix with bovine serum albumin molecule-functionalized gold nanoparticles.
View Article and Find Full Text PDFDeveloping low-cost, portable and simple analysis tools is of vital importance for food safety point-of-care testing. Therefore, herein, a new low-cost, simple to fabricate, disposable, electrochemical mast cell-based paper sensor is proposed and developed to sensitively determine the major milk allergen casein. Then, a graphene (GN)/carbon nanofiber (CN)/ Gelatin methacryloyl (GelMA) composite material with high conductivity and good biocompatibility was modified on the cell-based paper sensor to improve the electrical conductivity and provide a sensing recognition interface for the immobilization of rat basophilic leukemia (RBL-2H3) mast cells.
View Article and Find Full Text PDFThe analysis of antioxidants in foodstuffs has become an active area of research, leading to the recent development of numerous methods for assessing antioxidant capacity. Here we described the fabrication and validation of a novel and simple cell-based electrochemical biosensor for this purpose. The biosensor is used to assess the antioxidant capacity of cell-free extracts from Lactobacillus plantarum strains isolated from Chinese dry-cured ham.
View Article and Find Full Text PDF