In pursuit of new acetylcholinesterase (AChE) inhibitors for treating Alzheimer's disease (AD), a series of ten previously synthesized isoconessimine compounds (7a-7j) was in silico investigated for their binding interactions with AChE and pharmacokinetics based on absorption, distribution, metabolism, and excretion (ADME) properties using molecular docking, ONIOM (Our own N-layered Integrated molecular Orbital and molecular Mechanics) method and SwissADME tools. Docking experiments showed that all compounds bind within the active site gorge of AChE (PDB entry 1C2B), posing its aryloxy-substitutional ethyl group to catalytic site and conessine skeleton to peripheral anionic site. ONIOM interaction energy was used as an ONIOM score to improve docking score, and it ranked 7b as the most potent AChE inhibitor, in agreement with previous experiment.
View Article and Find Full Text PDFComputational approaches have been used to evaluate and define important residues for protein-protein interactions, especially antigen-antibody complexes. In our previous study, pairwise decomposition of residue interaction energies of single chain Fv with HIV-1 p17 epitope variants has indicated the key specific residues in the complementary determining regions (CDRs) of scFv anti-p17. In this present investigation in order to determine whether a specific side chain group of residue in CDRs plays an important role in bioactivity, computational alanine scanning has been applied.
View Article and Find Full Text PDFComputational assisted modeling was carried out to investigate the importance of specific residues in the binding site of scFv. In this study, scFv against HIV-1 epitope at the C-terminal on p17 (scFv anti-p17) was used as a candidate molecule for evaluating the method. The wild-type p17 and its nine natural mutants were docked with scFv anti-p17.
View Article and Find Full Text PDF