Publications by authors named "Panten U"

Since glucose stimulates protein biosynthesis in beta cells concomitantly with the stimulation of insulin release, the possible interaction of both processes was explored. The protein biosynthesis was inhibited by 10 μM cycloheximide (CHX) 60 min prior to the stimulation of perifused, freshly isolated or 22 h-cultured NMRI mouse islets. CHX reduced the insulinotropic effect of 25 mM glucose or 500 μM tolbutamide in fresh but not in cultured islets.

View Article and Find Full Text PDF

Glucose and alpha-ketoisocaproate, the keto acid analogue of leucine, stimulate insulin secretion in the absence of other exogenous fuels. Their mitochondrial metabolism in the beta-cell raises the cytosolic ATP/ADP ratio, thereby providing the triggering signal for the exocytosis of the insulin granules. However, additional amplifying signals are required for the full extent of insulin secretion stimulated by these fuels.

View Article and Find Full Text PDF

The pancreatic beta-cell transduces the availability of nutrients into the secretion of insulin. While this process is extensively modified by hormones and neurotransmitters, it is the availability of nutrients, above all glucose, which sets the process of insulin synthesis and secretion in motion. The central role of the mitochondria in this process was identified decades ago, but how changes in mitochondrial activity are coupled to the exocytosis of insulin granules is still incompletely understood.

View Article and Find Full Text PDF

Observing different kinetics of nutrient-induced insulin secretion in fresh and cultured islets under the same condition we compared parameters of stimulus secretion coupling in freshly isolated and 22-h-cultured NMRI mouse islets. Stimulation of fresh islets with 30 mM glucose after perifusion without nutrient gave a continuously ascending secretion rate. In 22-h-cultured islets the same protocol produced a brisk first phase followed by a moderately elevated plateau, a pattern regarded to be typical for mouse islets.

View Article and Find Full Text PDF

Objective: The metabolic amplification of insulin secretion is the sequence of events which enables the secretory response to a fuel secretagogue to exceed the secretory response to a purely depolarizing stimulus. The signals in this pathway are incompletely understood. Here, we have characterized an experimental procedure by which the amplifying response to glucose is reversibly desensitized, while the response to α-ketoisocaproic acid (KIC) is unchanged.

View Article and Find Full Text PDF

Objective: Stimulation of the ß-cell metabolism by glucose and other fuels triggers insulin release by enhancing the mitochondrial ATP production and acutely amplifies the secretory response by increase in mitochondrial export of metabolites. We aimed to narrow down the uniform final reaction steps mediating fuel-induced acute amplification of insulin secretion.

Material/methods: Insulin secretion and metabolic parameters were measured in isolated mouse islets exposed to the sulfonylurea glipizide in high concentration (closing all ATP-sensitive K(+) channels) during the entire experiment.

View Article and Find Full Text PDF

Objective: The β-cell metabolism of glucose and of some other fuels (e.g. α-ketoisocaproate) generates signals triggering and acutely amplifying insulin secretion.

View Article and Find Full Text PDF

The first phase of glucose-induced insulin secretion is generally regarded to represent the release of a finite pool of secretion-ready granules, triggered by the depolarization-induced influx of Ca2+ through L-type Ca2+ channels. However, the experimental induction of insulin secretion by imposed plasma membrane depolarization may be more complicated than currently appreciated. A comparison of the effects of high K+ concentrations with those of KATP channel closure, which initiates the electrical activity of the beta cell, suggests that 40 mM K+, which is a popular tool to produce a first phase-like secretion, is of supraphysiological strength, whereas the 20 mV depolarization by 15 mM K+ is nearly inefficient.

View Article and Find Full Text PDF

The K(+) channel blocker, TEA is known to increase action potential amplitude and insulin secretion of mouse beta-cells when added to a nutrient secretagogue. In the presence of a maximally effective sulfonylurea concentration (2.7 microM glipizide) the nutrient secretagogue alpha-ketoisocaproic acid (KIC, 10mM) strongly increased insulin secretion (about elevenfold).

View Article and Find Full Text PDF

Cytosolic alpha-ketoglutarate is a potential signalling compound at late steps of stimulus-secretion-coupling in the course of insulin secretion induced by glucose and other fuels. This hypothesis is mainly based on the insulin-releasing effect of the membrane permeable ester dimethyl alpha-ketoglutarate which enters the beta-cell and is cleaved to produce cytosolic monomethyl alpha-ketoglutarate and eventually alpha-ketoglutarate. The present study tested this hypothesis.

View Article and Find Full Text PDF

Aims/hypothesis: The aim of this study was to examine whether the cytosolic NADPH/NADP+ ratio of beta cells serves as an amplifying signal in fuel-induced insulin secretion and whether such a function is mediated by cytosolic alpha-ketoglutarate.

Methods: Pancreatic islets and islet cells were isolated from albino mice by collagenase digestion. Insulin secretion of incubated or perifused islets was measured by ELISA.

View Article and Find Full Text PDF

Aims/hypothesis: The beta cell metabolism of glucose, and some other fuels, initiates insulin secretion by closure of ATP-sensitive K+ channels and amplifies the secretory response via unknown metabolic intermediates. The aim of this study was to further characterise the mechanism responsible for the metabolic amplification of insulin secretion.

Materials And Methods: Pancreatic islets were isolated from albino mice by collagenase digestion.

View Article and Find Full Text PDF

Alpha-ketoisocaproate directly inhibits the ATP-sensitive K(+) channel (K(ATP) channel) in pancreatic beta-cells, but it is unknown whether direct K(ATP) channel inhibition contributes to insulin release by alpha-ketoisocaproate and related alpha-keto acid anions, which are generally believed to act via beta-cell metabolism. In membranes from HIT-T15 beta-cells and COS-1 cells expressing sulfonylurea receptor 1, alpha-keto acid anions bound to the sulfonylurea receptor site of the K(ATP) channel with affinities increasing in the order alpha-ketoisovalerate < alpha-ketovalerate < alpha-ketoisocaproate < alpha-ketocaproate < beta-phenylpyruvate. Patch-clamp experiments revealed a similar order for the K(ATP) channel-inhibitory potencies of the compounds (applied at the cytoplasmic side of inside-out patches from mouse beta-cells).

View Article and Find Full Text PDF

Hypoglycemic sulfonylureas (e.g. tolbutamide, glibenclamide) exert their stimulatory effects on pancreatic beta-cells by closure of ATP-sensitive K(+) (K(ATP)) channels.

View Article and Find Full Text PDF

Hypoglycaemic sulfonylureas initiate insulin secretion by direct inhibition of ATP-sensitive K(+)-channels in the pancreatic beta-cells. These channels are composed of two proteins, a pore-forming subunit (K(IR)6.2 in the case of beta-cells) and a regulatory subunit, the sulfonylurea receptor (SUR).

View Article and Find Full Text PDF

1. The structure-activity relationship for hypoglycaemic sulphonylureas and analogues was examined. Binding affinities were compared using membranes from HIT-T15 cells (beta-cell line) and from COS-7 cells transiently expressing sulphonylurea receptor subtypes (SUR1, SUR2A and SUR2B).

View Article and Find Full Text PDF

1. The structure activity relationships for the insulin secretagogues N-benzoyl-D-phenylalanine (NBDP) and related compounds were examined at the sulphonylurea receptor level by use of cultured HIT-T15 and mouse pancreatic beta-cells. The affinities of these compounds for the sulphonylurea receptor were compared with their potencies for K(ATP)-channel inhibition.

View Article and Find Full Text PDF

Background And Objectives: Biguanides have been used in treatment of diabetes mellitus for over 30 years now. Due to frequent occurrence of lactic acidosis, particularly in patients with serious contraindications to biguanide therapy and in cases of non-compliance with dosage instructions, buformin and phenformin were taken off the market in most European countries at the end of the seventies. Metformin continued to be allowed, since the risk of lactic acidosis is 20 times less than with phenformin or buformin due to the different pharmacokinetic properties of the substance.

View Article and Find Full Text PDF

ATP-sensitive potassium channels (K(ATP) channels) are heteromultimers of sulfonylurea receptors (SUR) and inwardly rectifying potassium channel subunits (K(IR)6.x) with a (SUR-K(IR)6.x)4 stoichiometry.

View Article and Find Full Text PDF

Binding of hypoglycemic sulfonylureas and their analogues to the sulfonylurea receptor in the beta-cell plasma membrane mediates closure of the ATP-sensitive K+-channel (KATP-channel) and thereby stimulation of insulin release. The sulfonylurea receptor is a member of the traffic ATPase family with two intracellular nucleotide binding folds. The receptor binding site for hypoglycemic drugs is located at the cytoplasmic face of the plasma membrane.

View Article and Find Full Text PDF

1. The temporal relationship between the early glucose-induced changes of membrane potential and cytoplasmic Ca2+ concentration ([Ca2+]i) was studied in insulin-releasing pancreatic beta-cells. 2.

View Article and Find Full Text PDF

Recently evidence was presented that fluorescein derivatives (e.g. phloxine B) inhibit glibenclamide binding by occupation of a nucleotide-binding site at the ATP-sensitive potassium channel (KATP channel).

View Article and Find Full Text PDF

1. In insulin-secreting cells the location of the sulphonylurea receptor was examined by use of a sulphonylurea derivative representing the glibenclamide molecule devoid of its cyclohexy moiety (compound III) and a benzenesulphonic acid derivative representing the glibenclamide molecule devoid of its cyclohexylurea moiety (compound IV). At pH 7.

View Article and Find Full Text PDF

In previous studies evidence has been presented by photoaffinity labeling that a polypeptide of 145-150 kDa represents the cerebral sulfonylurea receptor. However, covalent incorporation of [3H]glibenclamide or a 125I-labeled glibenclamide analogue into the sulfonylurea receptor required high amounts of photoenergy and took place with low yield of photoinsertion. To provide a probe with increased photoreactivity a 4-azido-5-iodosalicyloyl analogue of glibenclamide was synthesized.

View Article and Find Full Text PDF