Publications by authors named "Pantelis R Vlachas"

Simulations are vital for understanding and predicting the evolution of complex molecular systems. However, despite advances in algorithms and special purpose hardware, accessing the time scales necessary to capture the structural evolution of biomolecules remains a daunting task. In this work, we present a novel framework to advance simulation time scales by up to 3 orders of magnitude by learning the effective dynamics (LED) of molecular systems.

View Article and Find Full Text PDF

We introduce a data-driven forecasting method for high-dimensional chaotic systems using long short-term memory (LSTM) recurrent neural networks. The proposed LSTM neural networks perform inference of high-dimensional dynamical systems in their reduced order space and are shown to be an effective set of nonlinear approximators of their attractor. We demonstrate the forecasting performance of the LSTM and compare it with Gaussian processes (GPs) in time series obtained from the Lorenz 96 system, the Kuramoto-Sivashinsky equation and a prototype climate model.

View Article and Find Full Text PDF