Publications by authors named "Pantelias G"

While technological advances in radiation oncology have led to a more precise delivery of radiation dose and a decreased risk of side effects, there is still a need to better understand the mechanisms underlying DNA damage response (DDR) at the DNA and cytogenetic levels, and to overcome tumor resistance. To maintain genomic stability, cells have developed sophisticated signaling pathways enabling cell cycle arrest to facilitate DNA repair via the DDR-related kinases and their downstream targets, so that DNA damage or DNA replication stress induced by genotoxic therapies can be resolved. ATM, ATR, and Chk1 kinases are key mediators in DDR activation and crucial factors in treatment resistance.

View Article and Find Full Text PDF

For precision cancer radiotherapy, high linear energy transfer (LET) particle irradiation offers a substantial advantage over photon-based irradiation. In contrast to the sparse deposition of low-density energy by χ- or γ-rays, particle irradiation causes focal DNA damage through high-density energy deposition along the particle tracks. This is characterized by the formation of multiple damage sites, comprising localized clustered patterns of DNA single- and double-strand breaks as well as base damage.

View Article and Find Full Text PDF

Four repair pathways process DNA double-strand breaks (DSBs). Among these pathways the homologous recombination repair (HRR) subpathway of gene conversion (GC) affords error-free processing, but functions only in S- and G-phases of the cell cycle. Classical non-homologous end-joining (c-NHEJ) operates throughout the cell cycle, but causes small deletions and translocations.

View Article and Find Full Text PDF

A sensitive biodosimetry tool is required for rapid individualized dose estimation and risk assessment in the case of radiological or nuclear mass casualty scenarios to prioritize exposed humans for immediate medical countermeasures to reduce radiation related injuries or morbidity risks. Unlike the conventional Dicentric Chromosome Assay (DCA), which takes about 3-4 days for radiation dose estimation, cell fusion mediated Premature Chromosome Condensation (PCC) technique in G0 lymphocytes can be rapidly performed for radiation dose assessment within 6-8 hrs of sample receipt by alleviating the need for ex vivo lymphocyte proliferation for 48 hrs. Despite this advantage, the PCC technique has not yet been fully exploited for radiation biodosimetry.

View Article and Find Full Text PDF

Genome-wide studies in tumor cells have indicated that chromatin-modifying proteins are commonly mutated in human cancers. The lysine-specific methyltransferase 2C (KMT2C/MLL3) is a putative tumor suppressor in several epithelia and in myeloid cells. Here, we show that downregulation of KMT2C in bladder cancer cells leads to extensive changes in the epigenetic status and the expression of DNA damage response and DNA repair genes.

View Article and Find Full Text PDF

Purpose: Dose assessment intercomparisons within the RENEB network were performed for triage biodosimetry analyzing G-lymphocyte PCC for harmonization, standardization and optimization of the PCC assay.

Materials And Methods: Comparative analysis among different partners for dose assessment included shipment of PCC-slides and captured images to construct dose-response curves for up to 6 Gy γ-rays. Accident simulation exercises were performed to assess the suitability of the PCC assay by detecting speed of analysis and minimum number of cells required for categorization of potentially exposed individuals.

View Article and Find Full Text PDF

Purpose: A European network was initiated in 2012 by 23 partners from 16 European countries with the aim to significantly increase individualized dose reconstruction in case of large-scale radiological emergency scenarios.

Results: The network was built on three complementary pillars: (1) an operational basis with seven biological and physical dosimetric assays in ready-to-use mode, (2) a basis for education, training and quality assurance, and (3) a basis for further network development regarding new techniques and members. Techniques for individual dose estimation based on biological samples and/or inert personalized devices as mobile phones or smart phones were optimized to support rapid categorization of many potential victims according to the received dose to the blood or personal devices.

View Article and Find Full Text PDF

Purpose: The European Network of Biological and Physical Retrospective Dosimetry 'RENEB' has contributed to European radiation emergency preparedness. To give homogeneous dose estimation results, RENEB partners must harmonize their processes.

Materials And Methods: A first inter-comparison focused on biological and physical dosimetry was used to detect the outliers in terms of dose estimation.

View Article and Find Full Text PDF

Purpose: The RENEB accident exercise was carried out in order to train the RENEB participants in coordinating and managing potentially large data sets that would be generated in case of a major radiological event.

Materials And Methods: Each participant was offered the possibility to activate the network by sending an alerting email about a simulated radiation emergency. The same participant had to collect, compile and report capacity, triage categorization and exposure scenario results obtained from all other participants.

View Article and Find Full Text PDF

Purpose: To identify and assess, among the participants in the RENEB (Realizing the European Network of Biodosimetry) project, the emergency preparedness, response capabilities and resources that can be deployed in the event of a radiological or nuclear accident/incident affecting a large number of individuals. These capabilities include available biodosimetry techniques, infrastructure, human resources (existing trained staff), financial and organizational resources (including the role of national contact points and their articulation with other stakeholders in emergency response) as well as robust quality control/assurance systems.

Materials And Methods: A survey was prepared and sent to the RENEB partners in order to acquire information about the existing, operational techniques and infrastructure in the laboratories of the different RENEB countries and to assess the capacity of response in the event of radiological or nuclear accident involving mass casualties.

View Article and Find Full Text PDF

Purpose: To establish a training data set of digital images and to investigate the scoring criteria and dose assessment of the dicentric assay within the European network of biodosimetry (RENEB), a web based scoring inter-comparison was undertaken by 17 RENEB partners.

Materials And Methods: Two sets of 50 high resolution images were uploaded onto the RENEB website. One set included metaphases after a moderate exposure (1.

View Article and Find Full Text PDF

Purpose: RENEB, 'Realising the European Network of Biodosimetry and Physical Retrospective Dosimetry,' is a network for research and emergency response mutual assistance in biodosimetry within the EU. Within this extremely active network, a number of new dosimetry methods have recently been proposed or developed. There is a requirement to test and/or validate these candidate techniques and inter-comparison exercises are a well-established method for such validation.

View Article and Find Full Text PDF

High-dose assessments using the conventional dicentric assay are essentially restricted to doses up to 5 Gy and only to lymphocytes that succeed to proceed to first post-exposure mitosis. Since G2-checkpoint activation facilitates DNA damage recognition and arrest of damaged cells, caffeine is used to release G2-blocked lymphocytes overcoming the mitotic index and dicentric yield saturation problems, enabling thus dicentric analysis even at high-dose exposures. Using the fluorescence in situ hybridization technique with telomere and centromere peptide nucleic acid probes, the released lymphocytes, identified as metaphases with decondensed chromosomes following 1.

View Article and Find Full Text PDF

Combination of next-generation DNA sequencing, single nucleotide polymorphism array analyses and bioinformatics has revealed the striking phenomenon of chromothripsis, described as complex genomic rearrangements acquired in a single catastrophic event affecting one or a few chromosomes. Via an unproven mechanism, it is postulated that mechanical stress causes chromosome shattering into small lengths of DNA, which are then randomly reassembled by DNA repair machinery. Chromothripsis is currently examined as an alternative mechanism of oncogenesis, in contrast to the present paradigm that considers a stepwise development of cancer.

View Article and Find Full Text PDF

The frequency of dicentric chromosomes in human peripheral blood lymphocytes at metaphase is considered as the "gold-standard" method for biological dosimetry and, presently, it is the most widely used for dose assessment. Yet, it needs lymphocyte stimulation and a 2-day culture, failing the requirement of rapid dose estimation, which is a high priority in radiation emergency medicine and triage biodosimetry. In the present work, we assess the applicability of cell fusion mediated premature chromosome condensation (PCC) methodology, which enables the analysis of radiation-induced chromosomal aberrations directly in non-stimulated G0-lymphocytes, without the 2-day culture delay.

View Article and Find Full Text PDF

The dual role of caffeine as a chromosomal damage inducer and G2/M-checkpoint abrogator is well known but it is observed mainly at relatively high concentrations. At low concentrations, caffeine enhances the cytogenetic effects of several carcinogens and its intake during pregnancy has been recently reported to cause adverse birth outcomes. Interestingly, a threshold below which this association is not apparent was not identified.

View Article and Find Full Text PDF

Ionizing radiation (IR) induces double strand breaks (DSBs) in cellular DNA, which if not repaired correctly can cause chromosome translocations leading to cell death or cancer. Incorrect joining of DNA ends generating chromosome translocations can be catalyzed either by the dominant DNA-PKcs-dependent, classical non-homologous end-joining (c-NHEJ), or by an alternative end-joining (alt-EJ) process, functioning as backup to abrogated c-NHEJ, or homologous recombination repair. Alt-EJ operates with slower kinetics as compared to c-NHEJ and generates larger alterations at the junctions; it is also considered crucial to chromosome translocation-formation.

View Article and Find Full Text PDF

Curcumin and trans-resveratrol are well-known antioxidant polyphenols with radiomodulatory properties, radioprotecting non-cancerous cells while radiosensitizing tumor cells. This dual action may be the result of their radical scavenging properties and their effects on cell-cycle checkpoints that are activated in response to radiation-induced chromosomal damage. It could be also caused by their effect on regulatory pathways with impact on detoxification enzymes, the up-regulation of endogenous protective systems, and cell-cycle-dependent processes of DNA damage.

View Article and Find Full Text PDF

Purpose: To combine telomere and centromere (TC) staining of premature chromosome condensation (PCC) fusions to identify dicentrics, centric rings, and acentric chromosomes, making possible the realization of a dose-response curve and automation of the process.

Methods And Materials: Blood samples from healthy donors were exposed to (60)Co irradiation at varying doses up to 8 Gy, followed by a repair period of 8 hours. Premature chromosome condensation fusions were carried out, and TC staining using peptide nucleic acid probes was performed.

View Article and Find Full Text PDF

Creating a sustainable network in biological and retrospective dosimetry that involves a large number of experienced laboratories throughout the European Union (EU) will significantly improve the accident and emergency response capabilities in case of a large-scale radiological emergency. A well-organised cooperative action involving EU laboratories will offer the best chance for fast and trustworthy dose assessments that are urgently needed in an emergency situation. To this end, the EC supports the establishment of a European network in biological dosimetry (RENEB).

View Article and Find Full Text PDF

In mammalian cells, ionizing radiation (IR)-induced DNA double-strand breaks (DSBs) are repaired in all phases of the cell cycle predominantly by classical, DNA-PK-dependent nonhomologous end joining (D-NHEJ). Homologous recombination repair (HRR) is functional during the S- and G2-phases, when a sister chromatid becomes available. An error-prone, alternative form of end joining, operating as backup (B-NHEJ) functions robustly throughout the cell cycle and particularly in the G2-phase and is thought to backup predominantly D-NHEJ.

View Article and Find Full Text PDF

The etiology of acute myeloid leukemia (AML) underlies the influence of genetic variants in candidate genes. The CYP2B6 enzyme detoxifies many genotoxic xenobiotics, protecting cells from oxidative damage. The CYP2B6 gene is subjected to a single-nucleotide polymorphism (G⁵¹⁶T) with heterozygotes (GT) and homozygotes (TT) presenting decreased enzymatic activity.

View Article and Find Full Text PDF

Chronic lymphocytic leukemia (CLL) has been recently attributed to a combination of genetic predisposition and exposure to environmental factors. UDP-glucuronosyltransferase (UGT)1A1*28 is an inborn polymorphism that results in significant downregulation of uridine diphosphate glucuronyltransferase 1-1 (UGT1A1) activity, one of the most critical metabolizing enzymes involved in the detoxification of toxic substances, some of which contribute to CLL pathogenesis. Here, for the first time, we investigated the putative impact of UGT1A1*28 on CLL incidence and on the formation of the most common chromosomal abnormalities of CLL.

View Article and Find Full Text PDF

Radiation-induced bystander effects (RIBE), demonstrate the induction of biological non-targeted effects in cells which have not directly hit by radiation or by free radicals produced by ionization events. Although RIBE have been demonstrated using a variety of biological endpoints the mechanism(s) of this phenomenon still remain unclear. The controversial results of the in vitro RIBE and the evidence of non-targeted effects in various in vivo systems are discussed.

View Article and Find Full Text PDF