Replication of the RNA genome of influenza A virus occurs in the nucleus of infected cells. The influenza nucleoprotein (NP) associated with the viral RNA into ribonucleoprotein complexes (vRNPs) is involved in the nuclear import of the viral genome. NP has two nuclear localization sequences (NLSs), NLS1 and NLS2.
View Article and Find Full Text PDFInfluenza viruses deliver their genome into the nucleus of infected cells for replication. This process is mediated by the viral nucleoprotein (NP), which contains two nuclear localization sequences (NLSs): NLS1 at the N-terminus and a recently identified NLS2 (GRKTR). Through mutagenesis and functional studies, we demonstrated that NP must have both NLSs for an efficient nuclear import.
View Article and Find Full Text PDFBeing nonpathogenic to humans, rodent parvoviruses (PVs) are naturally oncolytic viruses with great potential as anti-cancer agents. As these viruses replicate in the host cell nucleus, they must gain access to the nucleus during infection. The PV minute virus of mice (MVM) and several other PVs transiently disrupt the nuclear envelope (NE) and enter the nucleus through the resulting breaks.
View Article and Find Full Text PDFThe transport of macromolecules into the cell nucleus occurs through nuclear pore complexes (NPCs) and is mediated by cellular receptors. Recently, a novel mechanism of nuclear entry, in which actin polymerization provides a propulsive force driving the transport through the NPC, has been proposed. This mechanism is used by the nucleocapsid from baculovirus, one of the largest viruses to replicate in the nucleus of their host cells, which crosses the NPC and enters the nucleus independently of cellular receptors.
View Article and Find Full Text PDFThe tumor suppressor activity of maspin (mammary serine protease inhibitor) has been associated with its nuclear localization. In this study we explore the regulation of maspin nuclear translocation. An in vitro nuclear import assay suggested that maspin can passively enter the nucleus.
View Article and Find Full Text PDFBackground & Aims: Hepatitis B virus (HBV) has a DNA genome but replicates within the nucleus by reverse transcription of an RNA pregenome, which is converted to DNA in cytoplasmic capsids. Capsids in this compartment are correlated with inflammation and epitopes of the capsid protein core (Cp) are a major target for T cell-mediated immune responses. We investigated the mechanism of cytoplasmic capsid transport, which is important for infection but also for cytosolic capsid removal.
View Article and Find Full Text PDFThe NIT-2 transcription factor belongs to the GATA transcription factor family and plays a fundamental role in the regulation of nitrogen metabolism. Because NIT-2 acts by accessing DNA inside the nucleus, understanding the nuclear import process of NIT-2 is necessary to characterize its function. Thus, in the present study, NIT-2 nuclear transport was investigated using a combination of biochemical, cellular, and biophysical methods.
View Article and Find Full Text PDFCell-cycle progression and the acquisition of a migratory phenotype are hallmarks of human carcinoma cells that are perceived as independent processes but may be interconnected by molecular pathways that control microtubule nucleation at centrosomes. Here, cell-cycle progression dramatically impacts the engraftment kinetics of 4T1-luciferase2 breast cancer cells in immunocompetent BALB/c or immunocompromised NOD-SCID gamma (NSG) mice. Multiparameter imaging of wound closure assays was used to track cell-cycle progression, cell migration, and associated phenotypes in epithelial cells or carcinoma cells expressing a fluorescence ubiquitin cell-cycle indicator.
View Article and Find Full Text PDFThe influenza A virus nucleoprotein (NP) is an essential multifunctional protein that encapsidates the viral genome and functions as an adapter between the virus and the host cell machinery. NPs from all strains of influenza A viruses contain two nuclear localization signals (NLSs): a well-studied monopartite NLS1 and a less-characterized NLS2, thought to be bipartite. Through site-directed mutagenesis and functional analysis, we found that NLS2 is also monopartite and is indispensable for viral infection.
View Article and Find Full Text PDFHIV-1 co-opts several host machinery to generate a permissive environment for viral replication and transmission. In this work we reveal how HIV-1 impacts the host translation and intracellular vesicular trafficking machineries for protein synthesis and to impede the physiological late endosome/lysosome (LEL) trafficking in stressful conditions. First, HIV-1 enhances the activity of the master regulator of protein synthesis, the mammalian target of rapamycin (mTOR).
View Article and Find Full Text PDFInfluenza A virus exploits the subcellular transport machinery during the early stages of infection. Actin filaments and microtubules facilitate the trafficking of virus-containing endosomes towards the perinuclear region; however, the role of vimentin remains to be determined. In this study, we followed influenza A virus infection in vimentin-null cells and found that vimentin depletion severely reduced influenza viral RNA and protein expression, and production of infectious progeny virions.
View Article and Find Full Text PDFThe transport of macromolecules into the nucleus is mediated by soluble cellular receptors of the importin β superfamily and requires the Ran-GTPase cycle. Several studies have provided evidence that there are exceptions to this canonical nuclear import pathway. Here, we report a new unconventional nuclear import mechanism exploited by the baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV).
View Article and Find Full Text PDFGp78 (also known as AMFR), an endoplasmic-reticulum (ER)-associated protein degradation (ERAD) E3 ubiquitin ligase, localizes to mitochondria-associated ER and targets the mitofusin (Mfn1 and Mfn2) mitochondrial fusion proteins for degradation. Gp78 is also the cell surface receptor for autocrine motility factor (AMF), which prevents Gp78-dependent mitofusin degradation. Gp78 ubiquitin ligase activity promotes ER-mitochondria association and ER-mitochondria Ca(2+) coupling, processes that are reversed by AMF.
View Article and Find Full Text PDFDNA viruses undertake their replication within the cell nucleus, and therefore they must first deliver their genome into the nucleus of their host cells. Thus, trafficking across the nuclear envelope is at the basis of DNA virus infections. Nuclear transport of molecules with diameters up to 39 nm is a tightly regulated process that occurs through the nuclear pore complex (NPC).
View Article and Find Full Text PDFThe minute virus of mice, prototype strain (MVMp), is a non-enveloped, single-stranded DNA virus of the family Parvoviridae. Unlike other parvoviruses, the mechanism of cellular uptake of MVMp has not been studied in detail. We analyzed MVMp endocytosis in mouse LA9 fibroblasts and a tumor cell line derived from epithelial-mesenchymal transition through polyomavirus middle T antigen transformation in transgenic mice.
View Article and Find Full Text PDFCurr Opin Virol
June 2015
The nuclear import of viral genomes is an important step of the infectious cycle for viruses that replicate in the nucleus of their host cells. Although most viruses use the cellular nuclear import machinery or some components of this machinery, others have developed sophisticated ways to reach the nucleus. Some of these have been known for some time; however, recent studies have changed our understanding of how some non-enveloped DNA viruses access the nucleus.
View Article and Find Full Text PDFGalectin-3 has previously been found to be required by the parvovirus minute virus of mice prototype strain (MVMp) for infection of mouse fibroblast cells. Since MVMp is an oncotropic virus, and galectin-3 is a multifunctional protein implicated in cancer metastasis, we hypothesized that galectin-3 and Mgat5, the Golgi enzyme that synthesizes high-affinity glycan ligands of galectin-3, might play a role in MVMp infection. Using siRNA-mediated knockdown of galectin-3 in mouse cells transformed with polyomavirus middle T antigen and Mgat5(-/-) mouse mammary tumor cells, we found that galectin-3 and Mgat5 are both necessary for efficient MVMp cell entry and infection, but not for cell binding.
View Article and Find Full Text PDFThe parvovirus minute virus of mice, prototype strain (MVMp), preferentially infects and kills cancer cells. This intrinsic MVMp oncotropism may depend in part on the early stages of MVMp infection. To test this hypothesis, we investigated the early events of MVMp infection in mouse LA9 fibroblasts and a highly invasive mouse mammary tumor cell line derived from polyomavirus middle T antigen-mediated transformation.
View Article and Find Full Text PDFXenopus oocytes are large in size and perfectly suited for microinjection experiments. Their nuclei, which can be readily isolated manually, are characterized by an extremely high density of nuclear pore complexes (NPCs). Therefore, Xenopus oocytes are an excellent system to study NPC structure and molecular architecture, as well as nucleocytoplasmic transport on an ultrastructural level.
View Article and Find Full Text PDFDisassembly of the nuclear lamina is essential in mitosis and apoptosis requiring multiple coordinated enzymatic activities in nucleus and cytoplasm. Activation and coordination of the different activities is poorly understood and moreover complicated as some factors translocate between cytoplasm and nucleus in preparatory phases. Here we used the ability of parvoviruses to induce nuclear membrane breakdown to understand the triggers of key mitotic enzymes.
View Article and Find Full Text PDFBaculoviruses are one of the largest viruses that replicate in the nucleus of their host cells. During infection, the rod-shape, 250-nm long nucleocapsid delivers its genome into the nucleus. Electron microscopy evidence suggests that baculoviruses, specifically the Alphabaculoviruses (nucleopolyhedroviruses) and the Betabaculoviruses (granuloviruses), have evolved two very distinct modes for doing this.
View Article and Find Full Text PDFIntermediate filaments (IFs) have recently been shown to serve novel roles during infection by many viruses. Here we have begun to study the role of IFs during the early steps of infection by the parvovirus minute virus of mice (MVM). We found that during early infection with MVM, after endosomal escape, the vimentin IF network was considerably altered, yielding collapsed immunofluorescence staining near the nuclear periphery.
View Article and Find Full Text PDFCellular factors associated with the parvovirus minute virus of mice (MVM) during infection are thought to play important roles in the MVM life cycle but only a few of these have been identified. Here we used a proteomic-based approach in order to identify host-binding partners of MVM. Using purified MVM as bait for immunoprecipitation assays, a total of 150 proteins were identified in MVM immunoprecipitates by quantitative liquid chromatography-tandem mass spectrometry.
View Article and Find Full Text PDFInt Rev Cell Mol Biol
November 2013
The nuclear envelope (NE) is a vital structure that separates the nucleus from the cytoplasm. Because the NE is such a critical cellular barrier, many viral pathogens have evolved to modulate its permeability. They do this either by breaching the NE or by disrupting the integrity and functionality of the nuclear pore complex (NPC).
View Article and Find Full Text PDFJ Struct Biol
January 2012
Baculoviruses are one of the largest viruses that replicate in the nucleus of their host cells. During an infection the capsid, containing the DNA viral genome, is released into the cytoplasm and delivers the genome into the nucleus by a mechanism that is largely unknown. Here, we used capsids of the baculovirus Autographa californica multiple nucleopolyhedrovirus in combination with electron microscopy and discovered this capsid crosses the NPC and enters into the nucleus intact, where it releases its genome.
View Article and Find Full Text PDF