Publications by authors named "Pantakani D"

Mycophenolic acid (MPA) is prescribed to prevent allograft rejection in organ transplanted patients. However, its use is sporadically linked to leak flux diarrhea and other gastrointestinal (GI) disturbances in around 75% of patients through yet unknown mechanisms. Recently, we identified Midkine as a modulator of tight junctions (TJs) permeability in MPA treated Caco-2 monolayer.

View Article and Find Full Text PDF

Unlabelled: Mycophenolic acid (MPA) is prescribed to maintain allografts in organ-transplanted patients. However, gastrointestinal (GI) complications, particularly diarrhea, are frequently observed as a side effect following MPA therapy. We recently reported that MPA altered the tight junction (TJ)-mediated barrier function in a Caco-2 cell monolayer model system.

View Article and Find Full Text PDF

Background: Mycophenolic acid (MPA) is an important immunosuppressive drug (ISD) prescribed to prevent graft rejection in the organ transplanted patients, however, its use is also associated with adverse side effects like sporadic gastrointestinal (GI) disturbances. Recently, we reported the MPA induced tight junctions (TJs) deregulation which involves MLCK/MLC-2 pathway. Here, we investigated the global histone acetylation as well as gene-specific chromatin signature of several genes associated with TJs regulation in Caco-2 cells after MPA treatment.

View Article and Find Full Text PDF

Reprogramming of mouse somatic cells into induced pluripotent stem cells (iPSCs) often generates partially reprogrammed iPSCs (pre-iPSCs), low-grade chimera forming iPSCs (lg-iPSCs) and fully reprogrammed, high-grade chimera production competent iPSCs (hg-iPSCs). Lg-iPSC transcriptome analysis revealed misregulated Dlk1-Dio3 cluster gene expression and subsequently the imprinting defect at the Dlk1-Dio3 locus. Here, we show that germ-cell marker Dppa3 is present only in lg-iPSCs and hg-iPSCs, and that induction with exogenous Dppa3 enhances reprogramming kinetics, generating all hg-iPSCs, similar to vitamin C (Vc).

View Article and Find Full Text PDF

Pelota (Pelo) is ubiquitously expressed, and its genetic deletion in mice leads to embryonic lethality at an early post-implantation stage. In the present study, we conditionally deleted Pelo and showed that PELO deficiency did not markedly affect the self-renewal of embryonic stem cells (ESCs) or their capacity to differentiate in teratoma assays. However, their differentiation into extraembryonic endoderm (ExEn) in embryoid bodies (EBs) was severely compromised.

View Article and Find Full Text PDF

RNA-binding proteins play an important role in the regulation of gene expression by modulating translation and localization of specific messenger RNAs (mRNAs) during early development and gametogenesis. The DAZ (Deleted in Azoospermia) family of proteins, which includes DAZ, DAZL, and BOULE, are germ cell-specific RNA-binding proteins that are implicated in translational regulation of several transcripts. Of particular importance is DAZL, which is present in vertebrates and arose from the duplication of the ancestral BOULE during evolution.

View Article and Find Full Text PDF

Pluripotency is maintained by both known and unknown transcriptional regulatory networks. In the present study, we have identified Zfp819, a KRAB-zinc finger protein, as a novel pluripotency-related factor and characterized its role in pluripotent stem cells. We show that Zfp819 is expressed highly in various types of pluripotent stem cells but not in their differentiated counterparts.

View Article and Find Full Text PDF

Dazl (deleted in azoospermia-like) is an RNA binding protein that is important for germ cell differentiation in vertebrates. In the present study, we report the identification of a novel Dazl isoform (Dazl_Δ8) that results from alternative splicing of exon8 of mouse Dazl. We observed the expression of Dazl_Δ8 in various pluripotent cell types, but not in somatic cells.

View Article and Find Full Text PDF

Stem cells in the developing embryo proliferate and differentiate while maintaining genomic integrity, failure of which may lead to accumulation of mutations and subsequent damage to the embryo. Embryonic stem cells (ESCs), the in vitro counterpart of embryo stem cells are highly sensitive to genotoxic stress. Defective ESCs undergo either efficient DNA damage repair or apoptosis, thus maintaining genomic integrity.

View Article and Find Full Text PDF

Background Information: Recently, it became apparent that microRNAs (miRNAs) can regulate gene expression post-transcriptionally. Despite the advances in identifying the testis-expressed miRNAs and their role in spermatogenesis, only few data are available showing the spatiotemporal expression of miRNAs during this process.

Results: To understand how different miRNAs can regulate germ cells differentiation, we generated a transgenic mouse model and purified pure populations of premeiotic (PrM) cells and primary spermatocytes (meiotic cells).

View Article and Find Full Text PDF

Pluripotent stem cells have the therapeutic potential in future regenerative medicine applications. Therefore, it is highly important to understand the molecular mechanisms governing the pluripotency and differentiation potential of these cells. Our current knowledge of pluripotent cells is largely limited owing to the candidate gene/protein approach rather than studying the complex interactions of the proteins.

View Article and Find Full Text PDF

ZFYVE27 (Protrudin) was originally identified as an interacting partner of spastin, which is most frequently mutated in hereditary spastic paraplegia. ZFYVE27 is a novel member of FYVE family, which is implicated in the formation of neurite extensions by promoting directional membrane trafficking in neurons. Now, through a yeast two-hybrid screen, we have identified that ZFYVE27 interacts with itself and the core interaction region resides within the third hydrophobic region (HR3) of the protein.

View Article and Find Full Text PDF

Embryonic stem cells (ESCs) generated from the in-vitro culture of blastocyst stage embryos are known as equivalent to blastocyst inner cell mass (ICM) in-vivo. Though several reports have shown the expression of germ cell/pre-meiotic (GC/PrM) markers in ESCs, their functional relevance for the pluripotency and germ line commitment are largely unknown. In the present study, we used mouse as a model system and systematically analyzed the RNA and protein expression of GC/PrM markers in ESCs and found them to be comparable to the expression of cultured pluripotent cells originated from the germ line.

View Article and Find Full Text PDF

We previously reported the generation of multipotent adult germline stem cells (maGSCs) from spermatogonial stem cells (SSCs) isolated from adult mouse testis. In a later study, we substantiated the pluripotency of maGSCs by demonstrating their close similarity to pluripotent male embryonic stem cells (ESCs) at the epigenetic level of global and gene-specific DNA methylation. Here, we extended the comparative epigenetic analysis of maGSCs and male ESCs by investigating the second main epigenetic modification in mammals, i.

View Article and Find Full Text PDF

Background: mutations in the SPG4/SPAST gene are the most common cause for hereditary spastic paraplegia (HSP). The splice-site mutations make a significant contribution to HSP and account for 17.4% of all types of mutations and 30.

View Article and Find Full Text PDF

The SPAST gene encoding for spastin plays a central role in the genetically heterogeneous group of diseases termed hereditary spastic paraplegia (HSP). In this study, we attempted to expand and refine the genetic and phenotypic characteristics of SPAST associated HSP by examining a large cohort of HSP patients/families. Screening of 200 unrelated HSP cases for mutations in the SPAST gene led to detection of 57 mutations (28.

View Article and Find Full Text PDF

Spastin, a member of the ATPases associated with various cellular activities (AAA) family of proteins, is the most frequently mutated in hereditary spastic paraplegia. The defining feature of the AAA proteins is a structurally conserved AAA domain which assembles into an oligomer. By chemical cross-linking and gel filtration chromatography, we show that spastin oligomerizes into a hexamer.

View Article and Find Full Text PDF

The SPG4 gene is frequently mutated in autosomal dominant form of hereditary spastic paraplegia (HSP). We report that the compound heterozygous sequence variants S44L, a known polymorphism, and c.1687G>A, a novel mutation in SPG4 cause a severe form of HSP in a patient.

View Article and Find Full Text PDF