Publications by authors named "Pannaga Krishnamurthy"

A key mechanism employed by plants to adapt to salinity stress involves maintaining ion homeostasis via the actions of ion transporters. While the function of cation transporters in maintaining ion homeostasis in plants has been extensively studied, little is known about the roles of their anion counterparts in this process. Here, we describe a mechanism of salt adaptation in plants.

View Article and Find Full Text PDF

The mechanism of conferring salt tolerance by AtTPS9 involves enhanced deposition of suberin lamellae in the Arabidopsis root endodermis, resulting in reduction of Na transported to the leaves. Members of the class I trehalose-6-phosphate synthase (TPS) enzymes are known to play an important role in plant growth and development in Arabidopsis. However, class II TPSs and their functions in salinity stress tolerance are not well studied.

View Article and Find Full Text PDF
Article Synopsis
  • - An innovative all-organic transparent plant e-skin has been developed to noninvasively monitor plant physiology for precision agriculture, using micropatterned PEDOT:PSS on a PDMS substrate.
  • - This e-skin is designed to be optically and mechanically invisible to plants, ensuring it doesn't negatively impact their health, while functioning as both strain and temperature sensors on leaves.
  • - The technology enables real-time monitoring of leaf strain and temperature fluctuations, and includes a digital-twin interface that visualizes the plant's surface environment for enhanced phenotyping analysis.
View Article and Find Full Text PDF

Salinity reduces the growth and productivity of crop plants worldwide. Mangroves have evolved efficient ion homeostasis mechanisms to survive under their natural saline growth habitat. Information obtained from them may be utilized for increasing the salt tolerance of crop plants.

View Article and Find Full Text PDF

Salinity affects crop productivity worldwide and mangroves growing under high salinity exhibit adaptations such as enhanced root apoplastic barrier to survive under such conditions. We have identified two cytochrome P450 family genes, AoCYP94B3 and AoCYP86B1 from the mangrove tree Avicennia officinalis and characterized them using atcyp94b3 and atcyp86b1, which are mutants of their putative Arabidopsis orthologs and the corresponding complemented lines with A. officinalis genes.

View Article and Find Full Text PDF

Methylglyoxal (MG), a by-product of various metabolic processes, including glycolysis, is a highly reactive cytotoxic metabolite. The level of MG in the cell is maintained at a non-toxic level via MG detoxification pathways such as the universal glyoxalase system, including glyoxalase I/II/III enzymes. Glyoxalase III (DJ-1) can breakdown MG to d-lactate in a single step without reducing glutathione (GSH).

View Article and Find Full Text PDF

Potassium transporters play an essential role in maintaining cellular ion homeostasis, turgor pressure, and pH, which are critical for adaptation under salt stress. We identified a salt responsive KUP/HAK/KT transporter family gene, , which has high sequence similarity to its ortholog . These genes were functionally characterized in mutant yeast cells and plants.

View Article and Find Full Text PDF

Salinity is an environmental stress that causes decline in crop yield. and other mangroves have adaptations such as ultrafiltration at the roots aided by apoplastic cell wall barriers to thrive in saline conditions. We studied a cytochrome P450 gene from , , and its putative ortholog in Arabidopsis (), , which are involved in apoplastic barrier formation.

View Article and Find Full Text PDF

The date palm () is an extremophile plant that can adapt to various abiotic stresses including drought and salinity. Salinity tolerance is a complex trait controlled by numerous genes. Identification and functional characterization of salt-responsive genes from the date palm is fundamental to understand salinity tolerance at the molecular level in this plant species.

View Article and Find Full Text PDF

Expression of AoNHX1 from the mangrove Avicennia increases salt tolerance of rice and Arabidopsis, and specific bHLH transcription factors regulate AtNHX1 and AtNHX6 in Arabidopsis to mediate the salinity response. Improving crop plants to better tolerate soil salinity is a challenging task. Mangrove trees such as Avicennia officinalis have special adaptations to thrive in high salt conditions, which include subcellular compartmentalization of ions facilitated by specialized ion transporters.

View Article and Find Full Text PDF

Class I TREHALOSE-PHOSPHATE-SYNTHASE (TPS) genes affect salinity tolerance and plant development. However, the function of class IITPS genes and their underlying mechanisms of action are unknown. We report the identification and functional analysis of a rice class IITPS gene (OsTPS8).

View Article and Find Full Text PDF

Salinity affects growth and development of plants, but mangroves exhibit exceptional salt tolerance. With direct exposure to salinity, mangrove roots possess specific adaptations to tolerate salt stress. Therefore, studying the early effects of salt on mangrove roots can help us better understand the tolerance mechanisms.

View Article and Find Full Text PDF

The data provides information in support of the research article, Proteomics 2014, 14, 2545-2557 [1]. Raw data is available from the ProteomeXchange Consortium via the PRIDE partnerRepository [2] with the dataset identifier PXD000837. Plasma membrane and tonoplast proteins from the leaves of Avicennia officinalis were identified using gel electrophoresis (one and two dimensional) combined with LC-MS analysis.

View Article and Find Full Text PDF

In order to understand the salt tolerance and secretion in mangrove plant species, gel electrophoresis coupled with LC-MS-based proteomics was used to identify key transport proteins in the plasma membrane (PM) and tonoplast fractions of Avicennia officinalis leaves. PM and tonoplast proteins were purified using two-aqueous-phase partitioning and density gradient centrifugation, respectively. Forty of the 254 PM proteins and 31 of the 165 tonoplast proteins identified were predicted to have transmembrane domains.

View Article and Find Full Text PDF

Salt exclusion at the roots and salt secretion in the leaves were examined in a mangrove, Avicennia officinalis. The non-secretor mangrove Bruguiera cylindrica was used for comparative study of hydrophobic barrier formation in the roots. Bypass flow was reduced when seedlings were previously treated with high salt concentration.

View Article and Find Full Text PDF

Rice is an important crop that is very sensitive to salinity. However, some varieties differ greatly in this feature, making investigations of salinity tolerance mechanisms possible. The cultivar Pokkali is salinity tolerant and is known to have more extensive hydrophobic barriers in its roots than does IR20, a more sensitive cultivar.

View Article and Find Full Text PDF

Increasing soil salinity reduces crop yields worldwide, with rice being particularly affected. We have examined the correlation between apoplastic barrier formation in roots, Na+ uptake into shoots and plant survival for three rice (Oryza sativa L.) cultivars of varying salt sensitivity: the salt-tolerant Pokkali, moderately tolerant Jaya and sensitive IR20.

View Article and Find Full Text PDF