Publications by authors named "Panmiao Liu"

Article Synopsis
  • Acute postsurgical pain (APSP) is important to monitor post-surgery as it can affect both immediate and long-term recovery outcomes.
  • Despite increased awareness and strategies for pain management, many patients still experience moderate-to-severe APSP due to varying individual factors like gender, age, and psychological state.
  • Understanding the risk factors for APSP allows healthcare providers to customize pain management plans, potentially preventing the development of chronic pain and reducing long-term physical and psychological impacts.
View Article and Find Full Text PDF

Aims: Sevoflurane is widely used for general anesthesia in children. Previous studies reported that multiple neonatal exposures to sevoflurane can induce long-term cognitive impairment in adolescent rats, but the underlying mechanisms were not defined.

Methods: Postnatal day 6 (P6) to P8 rat pups were exposed to 30% oxygen with or without 3% sevoflurane balanced with air.

View Article and Find Full Text PDF

Patients with chronic pain often experience memory impairment, but the underlying mechanisms remain elusive. The myelin sheath is crucial for rapid and accurate action potential conduction, playing a pivotal role in the development of cognitive abilities in the central nervous system. The study reveals that myelin degradation occurs in the hippocampus of chronic constriction injury (CCI) mice, which display both chronic pain and memory impairment.

View Article and Find Full Text PDF

Chronic inflammatory pain (CIP) is a common public medical problem, often accompanied by memory impairment. However, the mechanisms underlying CIP and comorbid memory impairment remain elusive. This study aimed to examine the role of the gut-microbiota-brain axis in CIP and comorbid memory impairment in mice treated with complete Freund's adjuvant (CFA).

View Article and Find Full Text PDF

Neuropathic pain, a severe clinical symptom, significantly affects the quality of life in the patients. The molecular mechanisms underlying neuropathic pain have been the focus of research in recent decades; however, the neuronal circuit-mediated mechanisms associated with this disorder remain poorly understood. Here, we report that a projection from the lateral hypothalamus (LH) glutamatergic neurons to the lateral habenula (LHb), an excitatory LH-LHb neuronal circuit, participates in nerve injury-induced nociceptive hypersensitivity.

View Article and Find Full Text PDF

Accumulating evidence has suggested that a great proportion of sepsis survivors suffer from long-term cognitive impairments after hospital discharge, leading to decreased life quality and substantial caregiving burdens for family members. However, the underlying mechanism remains unclear. In the present study, we established a mouse model of systemic inflammation by repeated lipopolysaccharide (LPS) injections.

View Article and Find Full Text PDF

Cognitive function is an important ability of the brain, but cognitive dysfunction can easily develop once the brain is injured in various neuropathological conditions or diseases. Photobiomodulation therapy is a type of noninvasive physical therapy that is gradually emerging in the field of neuroscience. Transcranial photobiomodulation has been commonly used to regulate neural activity in the superficial cortex.

View Article and Find Full Text PDF

Inflammatory depression is closely related to neuroinflammation. However, current anti-inflammatory drugs have low permeability to cross blood-brain barrier with difficulties reaching the central nervous system to provide therapeutic effectiveness. To overcome this limitation, the nano-based drug delivery technology was used to synthesize melanin-like polydopamine nanoparticles (PDA NPs) (~ 250 nm) which can cross the blood-brain barrier.

View Article and Find Full Text PDF

The neurotoxic effects of sevoflurane anesthesia on the immature nervous system have aroused public concern, but the specific effects and mechanism remain poorly understood. Pyroptosis caused by the activation of the NLRP3 inflammasome is pivotal for cell survival and acts as a key player in cognitive impairment. This study was carried out to determine the critical role of the NLRP3 inflammasome and high-mobility group box 1 (HMGB1) in sevoflurane-induced cognitive impairment.

View Article and Find Full Text PDF

Few studies have investigated factors associated with acute postsurgical pain (APSP) trajectories, and whether the APSP trajectory can predict chronic postsurgical pain (CPSP) remains unclear. We aimed to identify the predictors of APSP trajectories in patients undergoing gastrointestinal surgery. Moreover, we hypothesised that APSP trajectories were independently associated with CPSP.

View Article and Find Full Text PDF

Background: Preclinical studies have indicated that the ketamine metabolite (2R,6R)-hydroxynorketamine (HNK) is a rapid-acting antidepressant drug with limited dissociation properties and low abuse potential. However, its effects and molecular mechanisms remain unclear. In this work, we examined the involvement of brain-derived neurotrophic factor (BDNF), tropomyosin receptor kinase B (TrkB) and Narp in the antidepressant-like actions of (2R,6R)-HNK in a chronic restraint stress (CRS) mouse model.

View Article and Find Full Text PDF

Photonic crystal (PC) barcodes are a new type of spectrum-encoding microcarriers used in multiplex high-throughput bioassays, such as broad analysis of biomarkers for clinical diagnosis, gene expression, and cell culture. Unfortunately, most of these existing PC barcodes suffered from undesired features, including difficult spectrum-signal acquisition, weak mechanical strength, and high ontology fluorescence, which limited their development to real applications. To address these limitations, we report a new type of structural color-encoded PC barcodes.

View Article and Find Full Text PDF

Objective: Over 1 million new cases of hepatocellular carcinoma (HCC) are diagnosed worldwide every year. Its prognosis remains poor, and the 5-year survival rate in all disease stages is estimated to be between 10% and 20%. Radiofrequency ablation (RFA) has become an important local treatment for liver cancer, and machine learning (ML) can provide many shortcuts for liver cancer medical research.

View Article and Find Full Text PDF

To construct a machine learning algorithm model of lymph node metastasis (LNM) in patients with poorly differentiated-type intramucosal gastric cancer. 1169 patients with postoperative gastric cancer were divided into a training group and a test group at a ratio of 7:3. The model for lymph node metastasis was established with python machine learning.

View Article and Find Full Text PDF

Hothesis: Because of their flexible structure and adjustable color, structural colors with non-close-packed colloidal crystal arrays (NCCAs) have broad applications. However, most of these structural colors are limited by an approximate refractive index or high background scattering, and they present an unsatisfactory color that seriously hinders their practical application. Preparation of particles with a high refractive index or adsorption coefficient may be an effective approach to construct highly colorimetric NCCA structural colors in a nonaqueous solvent.

View Article and Find Full Text PDF

Structural color materials that are colloidally assembled as inspired by nature are attracting increased interest in a wide range of research fields. The assembly of colloidal particles provides a facile and cost-effective strategy for fabricating three-dimensional structural color materials. In this review, the generation mechanisms of structural colors from colloidally assembled photonic crystalline structures (PCSs) and photonic amorphous structures (PASs) are first presented, followed by the state-of-the-art and detailed technologies for their fabrication.

View Article and Find Full Text PDF

Enhanced efficiency for generating molecular ions is essential for high-throughput and sensitive detection using mass spectrometry in clinical diagnostics and biomarker discovery. In this study, we developed a novel strategy to promote laser desorption and ionization by using photonic crystals as substrates. The WO-TiO inverse opal photonic crystal, with a coupling stop band and laser wavelength, significantly enhanced the efficiency of laser desorption and ionization owing to the slow light effect and the porous structure of the inverse opal, which increased the interaction between the laser and WO-TiO.

View Article and Find Full Text PDF

Patterning colloidal photonic crystals have broad important applications in optical devices, functional coatings, full color displays, and colorimetric sensors. In this paper, a clickable colloidal photonic crystal using vinyl-modified sub-micrometer silica particles as building blocks was proposed to pattern photonic crystals. By click chemistry, different chemical groups were simply grafted to the clickable photonic crystals film and obtained wettability-encoded structure color patterns.

View Article and Find Full Text PDF

High mechanical strength, highly visible, and admirable grafting molecular ability is the key challenge for colloidal photonic crystal (CPC) barcode beads in multiplex analysis fields. To achieve this goal, we proposed self-adhesion particles, polydopamine-coated SiO nanoparticles (PDA@SiO), to construct CPC barcode beads by droplet-based microfluidic approach. Because of the adhesion, broad absorption of light, and "active" functional groups of PDA, the beads are endowed with high robustness, visibility, and excellent biomolecule immobilization.

View Article and Find Full Text PDF

Here we propose a new method for constructing highly color fast non-iridescent structural color materials by assembling self-adhesive poly-dopamine coated SiO nanoparticles (PDA@SiO) for amorphous colloidal arrays through a "spraying" process. Simply by alkaline vapor treatment, the adhesive forces and fastness of the amorphous colloidal arrays were significantly improved. This was demonstrated by lap shear tests of tape tearing and cohesive failure as well as a series of fastness tests like sandpaper abrasion, finger wiping and ultrasonic cleaning.

View Article and Find Full Text PDF

Structural color originates from physical interactions of light with submicron ordered structures. Structural color is also the optimal candidate as a method for coloring contact lenses because of its vivid iridescence and being free of pigment. Here, we report a facile approach for fabricating a novel structural color contact lens by decorating with structural color paint through UV polymerization in a mould.

View Article and Find Full Text PDF

A circlular structural-colored contact lens is reported, which is fabricated by replicating self-assembled colloidal photonic crystal templates. The structural-colored contact lenses not only display variable and brilliant color under light illumination, but also avoid the addition of any colorants to the hydrogel lenses and prevent the potential harm posed by traditional colored contact lenses.

View Article and Find Full Text PDF