In the face of rising global temperatures, the mechanisms behind an organism's ability to acclimate to heat stress remain enigmatic. The rice leaf folder, Cnaphalocrocis medinalis, traditionally viewed as temperature-sensitive, paradoxically exhibits robust larval acclimation to heat stress. This study used the heat-acclimated strain HA39, developed through multigenerational exposure to 39°C during the larval stage, and the unacclimated strain HA27 reared at 27°C to unravel the transgenerational effects of heat acclimation and its regulatory mechanisms.
View Article and Find Full Text PDFCuticular proteins (CPs) play important roles in insect growth and development. However, it is unknown whether CPs are related to heat tolerance. Cnaphalocrocis medinalis, a serious pest of rice, occurs in summer and exhibits strong adaptability to high temperature, but the underlying mechanism is unclear.
View Article and Find Full Text PDFHigh-performance solid-state electrolytes with healability to repair mechanical damages are important for the fabrication of Li-ion batteries (LIBs) with enhanced safety and prolonged service life. In this study, we present the fabrication of healable, highly conductive, flexible, and nonflammable ionogel electrolytes for use in LIBs by loading ionic liquids and Li salts within a hydrogen-bonded supramolecular poly(ionic liquid) copolymer network. The ionogel electrolytes exhibit ionic conductivities as high as 10 S/cm, which is comparable to the conventional liquid electrolytes.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2018
Fabrication of self-healing/healable materials using reversible interactions that are governed by their inherent chemical features is highly desirable because it avoids the introduction of extra groups that may present negative effects on their functions. The present study exploits the inherently featured electrostatic interactions of the ion pairs in polymeric ionic liquids (PILs) as the driving force to fabricate healable PIL copolymers. The healable PIL copolymers are fabricated through the copolymerization of the IL monomers with ethyl acrylate followed by the replacement of Br counteranions with bulkier ones such as bis(trifluoromethanesulfonyl)imide (TFSI).
View Article and Find Full Text PDF