The electron-donating and electron-accepting properties of N-heterocyclic carbene (NHC) ligands play a pivotal role in governing their interactions with transition metals, thereby influencing the selectivity and reactivity in catalytic processes. Herein, we report the synthesis of Pd/NHC and Ni/NHC complexes, wherein the electronic parameters of the NHC ligands were systematically varied. By performing a series of controlled structure modifications, we elucidated the influence of the σ-donor and π-acceptor properties of NHC ligands on interactions with the transition metals Pd and Ni and, consequently, the catalytic behavior of Pd and Ni complexes.
View Article and Find Full Text PDFPd/NHC complexes (NHCs - -heterocyclic carbenes) with electron-withdrawing halogen groups were prepared by developing an optimized synthetic procedure to access imidazolium salts and the corresponding metal complexes. Structural X-ray analysis and computational studies have been carried out to evaluate the effect of halogen and CF substituents on the Pd-NHC bond and have provided insight into the possible electronic effects on the molecular structure. The introduction of electron-withdrawing substituents changes the ratio of σ-/π-contributions to the Pd-NHC bond but does not affect the Pd-NHC bond energy.
View Article and Find Full Text PDFCombinations of anti-cancer drugs can overcome resistance to therapy and provide new more effective treatments. In this work we have analyzed the effect of the polyphenol quercetin and the anti-cancer sphingosine analog fingolimod on the sphingolipid metabolism in HepG2 cells, since sphingolipids are recognized as mediators of cell proliferation and apoptosis in cancer cells. Treatment of hepatocellular carcinoma HepG2 cells with quercetin and fingolimod, alone or in combination, induced different degrees of sphingomyelin (SM) reduction and a corresponding activation of neutral sphingomyelinase (nSMase).
View Article and Find Full Text PDFResveratrol is a naturally occurring polyphenol which has various beneficial effects, such as anti-inflammatory, anti-tumor, anti-aging, antioxidant, and neuroprotective effects, among others. The anti-cancer activity of resveratrol has been related to alterations in sphingolipid metabolism. We analyzed the effect of resveratrol on the enzymes responsible for accumulation of the two sphingolipids with highest functional activity-apoptosis promoting ceramide (CER) and proliferation-stimulating sphingosine-1-phosphate (S1P)-in human lung adenocarcinoma A549 cells.
View Article and Find Full Text PDFMultiple sclerosis (MS) is an autoimmune, inflammatory, degenerative disease of the central nervous system. Changes in lipid metabolism have been suggested to play important roles in MS pathophysiology and progression. In this work we analyzed the lipid composition and sphingolipid-catabolizing enzymes in erythrocytes and plasma from MS patients and healthy controls.
View Article and Find Full Text PDFThe key problem of the instability of fluorine-containing diazadienes was addressed to perform the efficient synthesis of imidazolium salts containing fluorine substituents in the aryl groups. The subsequent reaction of fluorine-containing imidazolium compounds (NHC) with palladium salts under simple conditions afforded new Pd/NHC complexes. Computational and structural studies were performed to assess the effect of fluorine on the Pd-NHC bond and gave insight into the electronic effects in the molecule.
View Article and Find Full Text PDFCellular senescence is one of the major factors contributing to the aging process. Photobiomodulation (PBM) is known to trigger an array of cellular responses, but there are no data on how it affects the process of cellular senescence. In this study, we analyze the effect of PBM on the cellular senescence and telomere dynamics.
View Article and Find Full Text PDFBackground: Rotavirus A (RVA) is one of the leading causes of acute gastroenteritis worldwide; however, few studies assessed RVA genetics with community surveillance.
Objectives: This study aimed to investigate clinical data, genetic diversity, and coinfection patterns of RVA infections in children from 2 to 36 months old with or without community childhood diarrhea in the Brazilian semiarid region during postvaccination era.
Methods: We enrolled and collected socioeconomic/clinical information using a standardized questionnaire and fecal samples from 291 children.
Fibronectin is a multifunctional, extracellular matrix glycoprotein that exists either as an insoluble multimeric fibrillar component of the extracellular matrix or as a soluble monomer. Cells attach to fibronectin through transmembrane integrin receptors and form a variety of cell-matrix contacts. Here we show that primary fibroblasts can use fibronectin to organize a specific cell-cell contact - "stitch adhesions.
View Article and Find Full Text PDFLung cancer is one of the most common and lethal types of oncological diseases. Despite the advanced therapeutic approaches, the prognosis for lung cancer still remains poor. Apparently, there is an imperative need for more efficient therapeutic strategies.
View Article and Find Full Text PDFBackground: Diarrheal diseases are an important cause of morbidity and mortality among children in developing countries. We aimed to study the etiology and severity of diarrhea in children living in the low-income semiarid region of Brazil.
Methodology: This is a cross-sectional, age-matched case-control study of diarrhea in children aged 2-36 months from six cities in Brazil's semiarid region.
J Clin Microbiol
April 2019
Enteropathogenic (EPEC) is a major cause of diarrhea in children from developing countries and presents high genetic variability. We aimed to characterize the EPEC virulence-related gene (VRG) distribution and copathogens associated with diarrhea and nutrition-related outcomes in children from the low-income Brazilian semiarid region. A cross-sectional case-control study of diarrhea was conducted in 1,191 children aged 2 to 36 months from the northeast region of Brazil.
View Article and Find Full Text PDFBackground And Objective: Norovirus (NoV) infections are known to have high-morbidity and mortality rates and are a major health problem globally. The impact of NoV on child development is, however, poorly understood. We evaluated the distribution of NoV genotypes in children from a low-income Brazilian semiarid region, in relation with their clinical symptoms, nutritional status, and co-pathogens.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
September 2017
The present study describes a live-cell biosensor, suitable for general evaluation of adhesion qualities of different substrates. It is based on NIH/3T3 fibroblast cell line stably expressing fusion fluorescently tagged proteins mCherry-vinculin and GFP-tensin as quantifiable markers for assessment not only of focal but also of fibrillar contacts. Four measurable parameters - spreading, polarization and development of focal and fibrillar adhesions were used to standardize the adhesion of biosensor cells after plating on five substrates of natural origin - fibronectin, vitronectin, laminin-111, laminin-521 and collagen type I.
View Article and Find Full Text PDFObjective: Drug loading into nanocarriers is used to facilitate drug delivery to target cells and organs. We have previously reported a change in cellular localization of epirubicin after loading to poly(butyl cyanoacrylate) (PBCA) nanoparticles. We aimed to further investigate the altered cellular localization and cellular responses to the described drug formulation.
View Article and Find Full Text PDFObjectives: Regulatory mechanisms of cell proliferation have been extensively studied as they represent major challenges when dealing with pathologies such as fibrosis, tumourigenesis or tissue regeneration. Numerous in vitro studies still exploit conventional, two-dimensional cell cultures where cells are forced to adhere to unnaturally stiff and flat surfaces of culture dishes. In the living organism, however, each cell is in contact with components of the extracellular matrix and/or neighbouring cells, thus creating a complex three-dimensional (3D) tissue structure.
View Article and Find Full Text PDFThe concept of pluripotency as a prerogative of cells of early mammal embryos and cultured embryonic stem cells (ESC) has been invalidated with the advent of induced pluripotent stem cells. Later, it became clear that the ability to generate all cell types of the adult organism is also a questionable aspect of pluripotency, as there are cell types, such as germ cells, which are difficult to produce from pluripotent stem cells. Recently it has been proposed that there are at least two different states of pluripotency; namely, the naïve, or ground state, and the primed state, which may differ radically in terms of timeline of existence, signalling mechanisms, cell properties, capacity for differentiation into different cell types, etc.
View Article and Find Full Text PDFInvestigations were performed on the influence of resveratrol on the lipid composition, metabolism, fatty acid and peroxide level in plasma membranes of hepatocytes, isolated from aged rats. Hepatocytes were chosen due to the central role of the liver in lipid metabolism and homeostasis. The obtained results showed that the level of sphingomyelin (SM) and phosphatidylserine (PS) was augmented in plasma membranes of resveratrol-treated senescent hepatocytes.
View Article and Find Full Text PDFAim: The aim of this study was to investigate the effects of testosterone replacement therapy (TRT) on erythrocyte membrane (EM) lipid composition and physico-chemical properties in hypogonadal men.
Methods: EM isolated from three patients before and after TRT with injectable testosterone undecanoate or testosterone gel were used for analysis of the phospholipid and fatty acid composition, cholesterol/phospholipid ratio, membrane fluidity, ceramide level and enzyme activities responsible for sphingomyelin metabolism.
Results: TRT induced increase of phosphatidylethanolamine (PE) in the EMs and sphingomyelin.
Complementary biophysical approaches were used to study the structural organization of plasma membrane lipids obtained from fibroblasts cultured as two-dimensional (2D) monolayer and in tissue-like three-dimensional (3D) conditions. Fluorescence microscopy experiments demonstrated different domain patterns for 2D and 3D plasma membrane lipid extracts. ESR demonstrated that 3D lipid extract is characterized with lower order parameter than 2D in the deep hydrophobic core of the lipid bilayer.
View Article and Find Full Text PDFThe three-dimensional (3D) cell culture approach offers a means to study cells under conditions that mimic an in vivo environment, thus avoiding the limitations imposed by the conventional two-dimensional (2D) monolayer cell cultures. By using this approach we demonstrated significant differences in the plasma membrane phospholipid composition and susceptibility to oxidation in cells cultured in three-dimensional environment compared to conventional monolayer cultures. The plasma membrane sphingomyelin (SM), which is a functionally active membrane phospholipid, was markedly increased in plasma membranes of 3D cells.
View Article and Find Full Text PDFMost in vitro studies use 2-dimensional (2D) monolayer cultures, where cells are forced to adjust to unnatural substrates that differ significantly from the natural 3-dimensional (3D) extracellular matrix that surrounds cells in living organisms. Our analysis demonstrates significant differences in the cholesterol and sphingomyelin content, structural organization and cholesterol susceptibility to oxidation of plasma membranes isolated from cells cultured in 3D cultures compared with conventional 2D cultures. Differences occurred in the asymmetry of cholesterol molecules and the physico-chemical properties of the 2 separate leaflets of plasma membranes in 2D and 3D cultured fibroblasts.
View Article and Find Full Text PDFThe differences in the surface active properties of native lipids extracted from plasma membranes of cells cultured as a monolayer and in three-dimensional (3D) matrix were investigated. This experimental model was chosen because most of the current knowledge on cellular physiological processes is based on studies performed with conventional monolayer two-dimensional (2D) cell cultures, where cells are forced to adjust to unnaturally rigid surfaces that differ significantly from the natural matrix surrounding cells in living organisms. Differences between monolayer and 3D cells were observed in the lipid composition of plasma membranes and especially in the level of the two major microdomain-forming lipids--sphingomyelin (SM) and cholesterol, which were significantly elevated in 3D cells.
View Article and Find Full Text PDFFibronectin fibrillogenesis is a cell-mediated, step-wise process that converts soluble fibronectin into insoluble fibronectin matrix. The deposition of fibronectin fibrils occurs at specific sites on the cell surface and depends on the unfolding of the fibronectin dimer. Fibronectin matrix provides positional information for cell migration during early embryogenesis and plays an important role in cell growth, differentiation, survival, and oncogenic transformation.
View Article and Find Full Text PDFThe integrin beta(1) cytoplasmic domain (tail) serves as a scaffold for numerous intracellular proteins. The mechanisms by which the tail coordinates these proteins to facilitate extracellular matrix assembly and cell spreading are not clear. This study demonstrates that the beta(1) cytoplasmic domain can regulate cell spreading on fibronectin and fibronectin matrix assembly through Akt- and talin-dependent mechanisms, respectively.
View Article and Find Full Text PDF