The century-long Michaelis-Menten rate law and its modifications in the modeling of biochemical rate processes stand on the assumption that the concentration of the complex of interacting molecules, at each moment, rapidly approaches an equilibrium (quasi-steady state) compared to the pace of molecular concentration changes. Yet, in the case of actively time-varying molecular concentrations with transient or oscillatory dynamics, the deviation of the complex profile from the quasi-steady state becomes relevant. A recent theoretical approach, known as the effective time-delay scheme (ETS), suggests that the delay from the relaxation time of molecular complex formation contributes to the substantial breakdown of the quasi-steady state assumption.
View Article and Find Full Text PDFThe seventh iteration of the reference genome assembly for Rattus norvegicus-mRatBN7.2-corrects numerous misplaced segments and reduces base-level errors by approximately 9-fold and increases contiguity by 290-fold compared with its predecessor. Gene annotations are now more complete, improving the mapping precision of genomic, transcriptomic, and proteomics datasets.
View Article and Find Full Text PDFLarge scale human genome wide association studies (GWAS) have identified a growing pool of genes associated with cigarette smoking. One of the most prominent, phosphodiesterase-4B (PDE4B), has been associated with multiple smoking phenotypes. Although PDE4B modulates the half-life of neuronal cAMP, its precise role in smoking behaviors is unknown.
View Article and Find Full Text PDFThe Michaelis-Menten (MM) rate law has been the dominant paradigm of modeling biochemical rate processes for over a century with applications in biochemistry, biophysics, cell biology, systems biology, and chemical engineering. The MM rate law and its remedied form stand on the assumption that the concentration of the complex of interacting molecules, at each moment, approaches an equilibrium (quasi-steady state) much faster than the molecular concentrations change. Yet, this assumption is not always justified.
View Article and Find Full Text PDFLarge scale human genome wide association studies (GWAS) have identified a growing pool of genes associated with cigarette smoking. One of the most prominent, phosphodiesterase-4B (PDE4B), has been associated with multiple smoking phenotypes. Although PDE4B modulates the half-life of neuronal cAMP, its precise role in smoking behaviors is unknown.
View Article and Find Full Text PDFThe seventh iteration of the reference genome assembly for -mRatBN7.2-corrects numerous misplaced segments and reduces base-level errors by approximately 9-fold and increases contiguity by 290-fold compared to its predecessor. Gene annotations are now more complete, significantly improving the mapping precision of genomic, transcriptomic, and proteomics data sets.
View Article and Find Full Text PDFOur backward simulation (BS) is an approach to infer the dynamics of individual components in ordinary differential equation (ODE) models, given the information on relatively downstream components or their sums. Here, we demonstrate the use of BS to infer protein synthesis rates with a given profile of protein concentrations over time in a circadian system. This protocol can also be applied to a wide range of problems with undetermined dynamics at the upstream levels.
View Article and Find Full Text PDFCircadian protein oscillations are maintained by the lifelong repetition of protein production and degradation in daily balance. It comes at the cost of ever-replayed, futile protein synthesis each day. This biosynthetic cost with a given oscillatory protein profile is relievable by a rhythmic, not constant, degradation rate that selectively peaks at the right time of day but remains low elsewhere, saving much of the gross protein loss and of the replenishing protein synthesis.
View Article and Find Full Text PDFThe WMI and WLI inbred rats were generated from the stress-prone, and not yet fully inbred, Wistar Kyoto (WKY) strain. These were selected using bi-directional selection for immobility in the forced swim test and were then sib-mated for over 38 generations. Despite the low level of genetic diversity among WKY progenitors, the WMI substrain is significantly more vulnerable to stress relative to the counter-selected WLI strain.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFThe role of our gut microbiota in health and disease is largely attributed to the collective metabolic activities of the inhabitant microbes. A system-level framework of the microbial community structure, mediated through metabolite transport, would provide important insights into the complex microbe-microbe and host-microbe chemical interactions. This framework, if adaptable to both mouse and human systems, would be useful for mechanistic interpretations of the vast amounts of experimental data from gut microbiomes in murine animal models, whether humanized or not.
View Article and Find Full Text PDFCircadian clocks play a pivotal role in orchestrating numerous physiological and developmental events. Waveform shapes of the oscillations of protein abundances can be informative about the underlying biochemical processes of circadian clocks. We derive a mathematical framework where waveforms do reveal hidden biochemical mechanisms of circadian timekeeping.
View Article and Find Full Text PDFDiet design for vegetarian health is challenging due to the limited food repertoire of vegetarians. This challenge can be partially overcome by quantitative, data-driven approaches that utilise massive nutritional information collected for many different foods. Based on large-scale data of foods' nutrient compositions, the recent concept of nutritional fitness helps quantify a nutrient balance within each food with regard to satisfying daily nutritional requirements.
View Article and Find Full Text PDFA system-level framework of complex microbe-microbe and host-microbe chemical cross-talk would help elucidate the role of our gut microbiota in health and disease. Here we report a literature-curated interspecies network of the human gut microbiota, called NJS16. This is an extensive data resource composed of ∼570 microbial species and 3 human cell types metabolically interacting through >4,400 small-molecule transport and macromolecule degradation events.
View Article and Find Full Text PDFThe recent advances in high-throughput omics technologies have enabled researchers to explore the intricacies of the human microbiome. On the clinical front, the gut microbial community has been the focus of many biomarker-discovery studies. While the recent deluge of high-throughput data in microbiome research has been vastly informative and groundbreaking, we have yet to capture the full potential of omics-based approaches.
View Article and Find Full Text PDFGenetic studies using model organisms have shown that many long-lived mutants display impaired fitness, such as reduced fecundity and delayed development. However, in several wild animals, the association between longevity and fitness does not seem to be inevitable. Thus, the relationship between longevity and fitness in wild organisms remains inconclusive.
View Article and Find Full Text PDFPLoS Comput Biol
February 2016
A wide range of organisms features molecular machines, circadian clocks, which generate endogenous oscillations with ~24 h periodicity and thereby synchronize biological processes to diurnal environmental fluctuations. Recently, it has become clear that plants harbor more complex gene regulatory circuits within the core circadian clocks than other organisms, inspiring a fundamental question: are all these regulatory interactions between clock genes equally crucial for the establishment and maintenance of circadian rhythms? Our mechanistic simulation for Arabidopsis thaliana demonstrates that at least half of the total regulatory interactions must be present to express the circadian molecular profiles observed in wild-type plants. A set of those essential interactions is called herein a kernel of the circadian system.
View Article and Find Full Text PDFAntimicrob Agents Chemother
April 2016
Bacterial persisters are a small fraction of quiescent cells that survive in the presence of lethal concentrations of antibiotics. They can regrow to give rise to a new population that has the same vulnerability to the antibiotics as did the parental population. Although formation of bacterial persisters in the presence of various antibiotics has been documented, the molecular mechanisms by which these persisters tolerate the antibiotics are still controversial.
View Article and Find Full Text PDFRecent progresses in data-driven analysis methods, including network-based approaches, are revolutionizing many classical disciplines. These techniques can also be applied to food and nutrition, which must be studied to design healthy diets. Using nutritional information from over 1,000 raw foods, we systematically evaluated the nutrient composition of each food in regards to satisfying daily nutritional requirements.
View Article and Find Full Text PDFThe quest for historically impactful science and technology provides invaluable insight into the innovation dynamics of human society, yet many studies are limited to qualitative and small-scale approaches. Here, we investigate scientific evolution through systematic analysis of a massive corpus of digitized English texts between 1800 and 2008. Our analysis reveals great predictability for long-prevailing scientific concepts based on the levels of their prior usage.
View Article and Find Full Text PDFIn order to determine beneficial gene deletions for ethanol production by the yeast Saccharomyces cerevisiae, we performed an in silico gene deletion experiment based on a genome-scale metabolic model. Genes coding for two oxidative phosphorylation reactions (cytochrome c oxidase and ubiquinol cytochrome c reductase) were identified by the model-based simulation as potential deletion targets for enhancing ethanol production and maintaining acceptable overall growth rate in oxygen-limited conditions. Since the two target enzymes are composed of multiple subunits, we conducted a genetic screening study to evaluate the in silico results and compare the effect of deleting various portions of the respiratory enzyme complexes.
View Article and Find Full Text PDFA low-diversity microbial community, dominated by the γ-proteobacterium Halomonas sulfidaeris, was detected in samples of warm saline formation porewater collected from the Cambrian Mt. Simon Sandstone in the Illinois Basin of the North American Midcontinent (1.8 km/5872 ft burial depth, 50°C, pH 8, 181 bars pressure).
View Article and Find Full Text PDFWe utilized abundant transcriptomic data for the primary classes of brain cancers to study the feasibility of separating all of these diseases simultaneously based on molecular data alone. These signatures were based on a new method reported herein--Identification of Structured Signatures and Classifiers (ISSAC)--that resulted in a brain cancer marker panel of 44 unique genes. Many of these genes have established relevance to the brain cancers examined herein, with others having known roles in cancer biology.
View Article and Find Full Text PDFThe phenotype of any organism on earth is, in large part, the consequence of interplay between numerous gene products encoded in the genome, and such interplay between gene products affects the evolutionary fate of the genome itself through the resulting phenotype. In this regard, contemporary genomes can be used as molecular records that reveal associations of various genes working in their natural lifestyles. By analyzing thousands of orthologs across ∼600 bacterial species, we constructed a map of gene-gene co-occurrence across much of the sequenced biome.
View Article and Find Full Text PDFBackground: Solventogenic clostridia offer a sustainable alternative to petroleum-based production of butanol--an important chemical feedstock and potential fuel additive or replacement. C. beijerinckii is an attractive microorganism for strain design to improve butanol production because it (i) naturally produces the highest recorded butanol concentrations as a byproduct of fermentation; and (ii) can co-ferment pentose and hexose sugars (the primary products from lignocellulosic hydrolysis).
View Article and Find Full Text PDF