Publications by authors named "Paniz Soltani"

Graphene nanoribbons (GNRs), quasi-one-dimensional strips of graphene, exhibit a nonzero bandgap due to quantum confinement and edge effects. In the past decade, different types of GNRs with atomically precise structures have been synthesized by a bottom-up approach and have attracted attention as a novel class of semiconducting materials for applications in electronics and optoelectronics. We report the large-scale, inexpensive growth of high-quality oxygen-boron-oxygen-doped chiral GNRs with a defined structure using chemical vapor deposition.

View Article and Find Full Text PDF

Structurally well-defined graphene nanoribbons (GNRs) have emerged as highly promising materials for the next-generation nanoelectronics. The electronic properties of GNRs critically depend on their edge topologies. Here, we demonstrate the efficient synthesis of a curved GNR () with a combined cove, zigzag, and armchair edge structure, through bottom-up synthesis.

View Article and Find Full Text PDF