17α-methyltestosterone (MT) hormone is a synthetic androgenic steroid hormone utilized to induce Nile tilapia transitioning for enhanced production yield. This study specifically focuses on the removal of MT through the utilization of photocatalytic membrane reactor (PMR), which employs an in-house polyvinylidene fluoride (PVDF) ultrafiltration membrane modified with 1% nanomaterials (either TiO or α-FeO). The molecular weight cut-off (MWCO) of the in-house membrane falls within the ultrafiltration range.
View Article and Find Full Text PDFThe characteristics of dissolved organic matter (DOM) play an important role in the formation and speciation of carcinogenic disinfection byproducts. This study investigated changes in the characteristics and reactivity of DOM caused by the magnetic ion exchange resins, MIEX® DOC and MIEX® GOLD, using fluorescence excitation-emission matrix (EEM) with parallel factor (PARAFAC) analysis and Orbitrap mass spectrometry (Orbitrap MS) with unknown screening analysis. A five-component PARAFAC model was developed and validated from 208 EEMs of raw and MIEX®-treated water samples.
View Article and Find Full Text PDFThe characteristics of foulant in the cake layer and bulk suspended solids of a 10 L submerged anaerobic membrane bioreactor (AnMBR) used for treatment of palm oil mill effluent (POME) were investigated in this study. Three different organic loading rates (OLRs) were applied with prolonged sludge retention time throughout a long operation time (270 days). The organic foulant was characterized by biomass concentration and concentration of extracellular polymeric substances (EPS).
View Article and Find Full Text PDFThe presence of natural organic matter (NOM) in groundwater could play an important role in the removal of contaminants by nanoscale zero-valent iron (NZVI). NOM has a heterogeneous structure and can be divided into 6 fractions based on polarity and charges: hydrophobic acid (HPOA), hydrophobic base (HPOB), hydrophobic neutral (HPON), hydrophilic acid (HPIA), hydrophilic base (HPIB), and hydrophilic neutral (HPIN). The objective of this study was to evaluate the interactions between NOM fractions and NZVI using two approaches: 1) the interaction between NOM fraction isolates and NZVI and 2) bulk NOM fractionation before and after reaction with NZVI.
View Article and Find Full Text PDFConcentration and chemical composition of dissolved organic matter (DOM) play a major role in formation and speciation of disinfection by-products, such as trihalomethanes (THMs), in water treatment plants (WTPs) during disinfection. This study characterized DOM across the process trains of WTPs using fluorescence excitation emission matrices (EEMs) together with parallel factor analysis (PARAFAC). The PARAFAC model was developed from 216 EEMs of bimonthly water samples from three WTPs in Khon Kaen, Thailand, from May 2018 to Mar 2019.
View Article and Find Full Text PDFMembrane fouling by dissolved organic matter (DOM), especially microbially-derived DOM, is a major challenge for ultrafiltration (UF) membranes in water purification. Fouling may be mitigated by pretreating feed waters; however, there are no comprehensive studies that compare the fouling reduction efficacies across different pretreatment processes. Further, there is a limited understanding of the relationship between fouling reduction efficacy and microbially-derived DOM removal from source waters.
View Article and Find Full Text PDFTwo challenges to low-pressure membrane (LPM) filtration are limited rejection of dissolved organic matter (DOM) and membrane fouling by DOM. The magnetic ion exchange resin MIEX(®) (Ixom Watercare Inc.) has been demonstrated to remove substantial amounts of DOM from many source waters, suggesting that MIEX can both reduce DOM content in membrane feed waters and minimize LPM fouling.
View Article and Find Full Text PDF