Publications by authors named "Panin V"

The neutron-rich unbound fluorine isotope ^{30}F_{21} has been observed for the first time by measuring its neutron decay at the SAMURAI spectrometer (RIBF, RIKEN) in the quasifree proton knockout reaction of ^{31}Ne nuclei at 235  MeV/nucleon. The mass and thus one-neutron-separation energy of ^{30}F has been determined to be S_{n}=-472±58(stat)±33(sys)  keV from the measurement of its invariant-mass spectrum. The absence of a sharp drop in S_{n}(^{30}F) shows that the "magic" N=20 shell gap is not restored close to ^{28}O, which is in agreement with our shell-model calculations that predict a near degeneracy between the neutron d and fp orbitals, with the 1p_{3/2} and 1p_{1/2} orbitals becoming more bound than the 0f_{7/2} one.

View Article and Find Full Text PDF
Article Synopsis
  • The Facility for Antiproton and Ion Research (FAIR) is nearing completion in Darmstadt, Germany, and will serve as Europe's main nuclear physics research center for decades.
  • It features the Super-FRagment Separator, capable of producing high-intensity radioactive ion beams for a variety of nuclear reactions, enabling studies from low-energy physics to high-density nuclear matter.
  • The article highlights potential research opportunities and physics cases at FAIR, focusing on the impact of newly developed relativistic radioactive beam reactions on nuclear structure investigations.
View Article and Find Full Text PDF

Incorrect scatter scaling of positron emission tomography (PET) images can lead to halo artifacts, quantitative bias, or reconstruction failure. Tail-fitted scatter scaling (TFSS) possesses performance limitations in multiple cases. This study aims to investigate a novel method for scatter scaling: maximum-likelihood scatter scaling (MLSS) in scenarios where TFSS tends to induce artifacts or are observed to cause reconstruction abortion.

View Article and Find Full Text PDF
Article Synopsis
  • - The study focuses on enhancing the quality of dynamic PET images by reducing noise, which often leads to inaccuracies in parametric images.
  • - A new denoising technique called Population-based Deep Image Prior (PDIP) is proposed, incorporating information from a large dataset of static PET images to improve noise reduction without losing important details like small lesions.
  • - PDIP outperforms traditional models (Prompts-matched Supervised model and conditional DIP) in maintaining the accuracy of lesion predictions (K values), demonstrating its effectiveness in handling the complexities of dynamic PET imaging.
View Article and Find Full Text PDF

Improving the nutritional value of grain sorghum, a drought- and heat-tolerant grain crop, is an important task in the context of global warming. One of the reasons for the low nutritional value of sorghum grain is the resistance of its storage proteins (kafirins) to proteolytic digestion, which is due, among other things, to the structural organization of protein bodies, in which γ-kafirin, the most resistant to proteases, is located on the periphery, encapsulating more easily digested α-kafirins. The introduction of genetic constructs capable of inducing RNA silencing of the γ-kafirin (gKAF1) gene opens up prospects for solving this problem.

View Article and Find Full Text PDF

The structure and decay of the most neutron-rich beryllium isotope, ^{16}Be, has been investigated following proton knockout from a high-energy ^{17}B beam. Two relatively narrow resonances were observed for the first time, with energies of 0.84(3) and 2.

View Article and Find Full Text PDF

The cluster structure of the neutron-rich isotope ^{10}Be has been probed via the (p,pα) reaction at 150  MeV/nucleon in inverse kinematics and in quasifree conditions. The populated states of ^{6}He residues were investigated through missing mass spectroscopy. The triple differential cross section for the ground-state transition was extracted for quasifree angle pairs (θ_{p},θ_{α}) and compared to distorted-wave impulse approximation reaction calculations performed in a microscopic framework using successively the Tohsaki-Horiuchi-Schuck-Röpke product wave function and the wave function deduced from antisymmetrized molecular dynamics calculations.

View Article and Find Full Text PDF

Subjecting a physical system to extreme conditions is one of the means often used to obtain a better understanding and deeper insight into its organization and structure. In the case of the atomic nucleus, one such approach is to investigate isotopes that have very different neutron-to-proton (N/Z) ratios than in stable nuclei. Light, neutron-rich isotopes exhibit the most asymmetric N/Z ratios and those lying beyond the limits of binding, which undergo spontaneous neutron emission and exist only as very short-lived resonances (about 10 s), provide the most stringent tests of modern nuclear-structure theories.

View Article and Find Full Text PDF

Recent research has unveiled numerous important functions of protein glycosylation in development, homeostasis, and diseases. A type of glycosylation taking the center stage is protein O-mannosylation, a posttranslational modification conserved in a wide range of organisms, from yeast to humans. In animals, protein O-mannosylation plays a crucial role in the nervous system, whereas protein O-mannosylation defects cause severe neurological abnormalities and congenital muscular dystrophies.

View Article and Find Full Text PDF

We report on the first proton-induced single proton- and neutron-removal reactions from the neutron-deficient ^{14}O nucleus with large Fermi-surface asymmetry S_{n}-S_{p}=18.6  MeV at ∼100  MeV/nucleon, a widely used energy regime for rare-isotope studies. The measured inclusive cross sections and parallel momentum distributions of the ^{13}N and ^{13}O residues are compared to the state-of-the-art reaction models, with nuclear structure inputs from many-body shell-model calculations.

View Article and Find Full Text PDF

Modification by sialylated glycans can affect protein functions, underlying mechanisms that control animal development and physiology. Sialylation relies on a dedicated pathway involving evolutionarily conserved enzymes, including CMP-sialic acid synthetase (CSAS) and sialyltransferase (SiaT) that mediate the activation of sialic acid and its transfer onto glycan termini, respectively. In , and genes function in the nervous system, affecting neural transmission and excitability.

View Article and Find Full Text PDF

Mutations in protein O-mannosyltransferases (POMTs) result in severe brain defects and congenital muscular dystrophies characterized by abnormal glycosylation of α-dystroglycan (α-Dg). However, neurological phenotypes of POMT mutants are not well understood, and the functional substrates of POMTs other than α-Dg remain unknown. Using a Drosophila model, here we reveal that Dg alone cannot account for the phenotypes of POMT mutants, and identify Protein tyrosine phosphatase 69D (PTP69D) as a gene interacting with POMTs in producing the abdomen rotation phenotype.

View Article and Find Full Text PDF

The one-neutron knockout from ^{52}Ca in inverse kinematics onto a proton target was performed at ∼230  MeV/nucleon combined with prompt γ spectroscopy. Exclusive quasifree scattering cross sections to bound states in ^{51}Ca and the momentum distributions corresponding to the removal of 1f_{7/2} and 2p_{3/2} neutrons were measured. The cross sections, interpreted within the distorted-wave impulse approximation reaction framework, are consistent with a shell closure at the neutron number N=32, found as strong as at N=28 and N=34 in Ca isotopes from the same observables.

View Article and Find Full Text PDF

Aim: To evaluate the effect of combining positron range correction (PRC) with point-spread-function (PSF) correction and to compare different methods of implementation into iterative image reconstruction for I-PET imaging.

Materials And Methods: Uniform PR blurring kernels of I were generated using the GATE (GEANT4) framework in various material environments (lung, water, and bone) and matched to a 3D matrix. The kernels size was set to 11 × 11 × 11 based on the maximum PR in water and the voxel size of the PET system.

View Article and Find Full Text PDF

Purpose: Attenuation correction is a critically important step in data correction in positron emission tomography (PET) image formation. The current standard method involves conversion of Hounsfield units from a computed tomography (CT) image to construct attenuation maps (µ-maps) at 511 keV. In this work, the increased sensitivity of long axial field-of-view (LAFOV) PET scanners was exploited to develop and evaluate a deep learning (DL) and joint reconstruction-based method to generate µ-maps utilizing background radiation from lutetium-based (LSO) scintillators.

View Article and Find Full Text PDF

A long-standing question in nuclear physics is whether chargeless nuclear systems can exist. To our knowledge, only neutron stars represent near-pure neutron systems, where neutrons are squeezed together by the gravitational force to very high densities. The experimental search for isolated multi-neutron systems has been an ongoing quest for several decades, with a particular focus on the four-neutron system called the tetraneutron, resulting in only a few indications of its existence so far, leaving the tetraneutron an elusive nuclear system for six decades.

View Article and Find Full Text PDF

Aim: To develop and evaluate a new approach for spatially variant and tissue-dependent positron range (PR) correction (PRC) during the iterative PET image reconstruction.

Materials And Methods: The PR distributions of three radionuclides (F, Ga, and I) were simulated using the GATE (GEANT4) framework in different material compositions (lung, water, and bone). For every radionuclide, the uniform PR kernel was created by mapping the simulated 3D PR point cloud to a 3D matrix with its size defined by the maximum PR in lung (F) or water (Ga and I) and the PET voxel size.

View Article and Find Full Text PDF

Purpose: To investigate the kinetics of F-fluorodeoxyglucose (F-FDG) by positron emission tomography (PET) in multiple organs and test the feasibility of total-body parametric imaging using an image-derived input function (IDIF).

Methods: Twenty-four oncological patients underwent dynamic F-FDG scans lasting 65 min using a long  axial FOV (LAFOV) PET/CT system. Time activity curves (TAC) were extracted from semi-automated segmentations of multiple organs, cerebral grey and white matter, and from vascular structures.

View Article and Find Full Text PDF

Purpose: Long-axial field-of-view (FOV) positron emission tomography (PET) scanners have gained a lot of interest in the recent years. Such scanners provide increased sensitivity and enable unique imaging opportunities that were not previously feasible. Benefiting from the high sensitivity of a long-axial FOV PET scanner, we studied a computed tomography (CT)-less reconstruction algorithm for the Siemens Biograph Vision Quadra with an axial FOV of 106 cm.

View Article and Find Full Text PDF

. The aim of the phantom study was to validate and to improve the computed tomography (CT) images used for the dose computation in proton therapy. It was tested, if the joint reconstruction of activity and attenuation images of time-of-flight PET (ToF-PET) scans could improve the estimation of the proton stopping-power.

View Article and Find Full Text PDF

AS-3 line of Sorghum bicolor possesses functional components of apomixis-apospory, parthenogenesis and autonomous endospermogenesis. The data obtained indicate efficiency of selection for apomixis components in diploid species of cultivated crops. Apomixis (seed formation without fertilization) is one of most attractive phenomena in plant biology.

View Article and Find Full Text PDF

Direct proton-knockout reactions of ^{55}Sc at ∼220  MeV/nucleon were studied at the RIKEN Radioactive Isotope Beam Factory. Populated states of ^{54}Ca were investigated through γ-ray and invariant-mass spectroscopy. Level energies were calculated from the nuclear shell model employing a phenomenological internucleon interaction.

View Article and Find Full Text PDF

A kinematically complete quasifree (p,pn) experiment in inverse kinematics was performed to study the structure of the Borromean nucleus ^{17}B, which had long been considered to have a neutron halo. By analyzing the momentum distributions and exclusive cross sections, we obtained the spectroscopic factors for 1s_{1/2} and 0d_{5/2} orbitals, and a surprisingly small percentage of 9(2)% was determined for 1s_{1/2}. Our finding of such a small 1s_{1/2} component and the halo features reported in prior experiments can be explained by the deformed relativistic Hartree-Bogoliubov theory in continuum, revealing a definite but not dominant neutron halo in ^{17}B.

View Article and Find Full Text PDF