Spinal cord injury (SCI) causes abnormal liver function, the development of metabolic dysfunction-associated steatotic liver disease features and metabolic impairment in patients. Experimental models also demonstrate acute and chronic changes in the liver that may, in turn, affect SCI recovery. These changes have collectively been proposed to contribute to the development of a SCI-induced metabolic dysfunction-associated steatohepatitis (MASH).
View Article and Find Full Text PDFThe risk of complications following surgical procedures is significantly increased in patients with SARS-CoV-2 infection. However, the mechanisms underlying these correlations are not fully known. Spinal cord injury (SCI) patients who underwent reconstructive surgery for pressure ulcers (PUs) before and during the COVID-19 pandemic were included in this study.
View Article and Find Full Text PDFIn species that regenerate the injured spinal cord, the ependymal region is a source of new cells and a prominent coordinator of regeneration. In mammals, cells at the ependymal region proliferate in normal conditions and react after injury, but in humans, the central canal is lost in the majority of individuals from early childhood. It is replaced by a structure that does not proliferate after damage and is formed by large accumulations of ependymal cells, strong astrogliosis and perivascular pseudo-rosettes.
View Article and Find Full Text PDFCB cannabinoid receptor is widely expressed in the central nervous system of animals from late prenatal development to adulthood. Appropriate activation and signaling of CB cannabinoid receptors in cortical interneurons are crucial during perinatal/postnatal ages and adolescence, when long-lasting changes in brain activity may elicit subsequent appearance of disorders in the adult brain. Here we used an optimized immunoprecipitation protocol based on specific antibodies followed by shot-gun proteomics to find CB interacting partners in postnatal rat GABAergic cortical neurons in vitro at two different stages of maturation.
View Article and Find Full Text PDFIn the last years, regional differences have been reported between the brain and spinal cord oligodendrocytes, which should be considered when designing therapeutic strategies for myelin repair. Promising targets to achieve myelin restoration are the different components of the endocannabinoid system (ECS) that modulate oligodendrocyte biology, but almost all studies have been focused on brain-derived cells. Therefore, we compared the ECS between the spinal cord and cerebral cortex-derived oligodendrocyte precursor cells (OPCs) and mature oligodendrocytes (OLs).
View Article and Find Full Text PDFBackground: Cannabinoid receptor 1 (CB) identification by western blot (WB) has generated a great deal of controversial data making the interpretation of the results difficult. Our purpose is to find the most adequate experimental conditions to detect CB by WB and immunoprecipitation (IP) as a first step towards the study of CB interactome.
New Method: We use CB knockout mice tissue as negative controls and describe appropriate sample handling conditions for CB detection by WB and IP from brain and cortical neuron cultures.
In vertebrates that regenerate the injured spinal cord, cells at the ependymal region proliferate and coordinate the formation of bridges between the lesion stumps. In mammals, these cells also proliferate profusely around the central canal after spinal cord injury, although their actual contribution to repair is controversial. In humans, however, the central canal disappears from early childhood in the majority of individuals, being replaced by astrocyte gliosis, ependymocyte clusters, and perivascular pseudo-rosettes.
View Article and Find Full Text PDFIn the last few decades many efforts have been dedicated to decipher the nature and regenerative potential of neurogenic niches and endogenous stem cells after damage of the central nervous system. In the spinal cord, it has been largely focused on the ependymal region, which hosts neural precursors/stem cells (NSC) in rodents but differs between species and ages. In the current chapter, we detail our protocol to study the gene expression profile of this region using fresh frozen blocks of rat and human post-mortem spinal cords.
View Article and Find Full Text PDFThe Wnt family of proteins plays key roles during central nervous system development and in several physiological processes during adulthood. Recently, experimental evidence has linked Wnt-related genes to regulation and maintenance of stem cells in the adult neurogenic niches. In the spinal cord, the ependymal cells surrounding the central canal form one of those niches, but little is known about their Wnt expression patterns.
View Article and Find Full Text PDFCannabinoids are involved in the regulation of neural stem cell biology and their receptors are expressed in the neurogenic niches of adult rodents. In the spinal cord of rats and mice, neural stem cells can be found in the ependymal region, surrounding the central canal, but there is evidence that this region is largely different in adult humans: lacks a patent canal and presents perivascular pseudorosettes, typically found in low grade ependymomas. Using Laser Capture Microdissection, Taqman gene expression assays and immunohistochemistry, we have studied the expression of endocannabinoid system components (receptors and enzymes) at the human spinal cord ependymal region.
View Article and Find Full Text PDFSeveral laboratories have described the existence of undifferentiated precursor cells that may act like stem cells in the ependyma of the rodent spinal cord. However, there are reports showing that this region is occluded and disassembled in humans after the second decade of life, although this has been largely ignored or interpreted as a post-mortem artefact. To gain insight into the patency, actual structure, and molecular properties of the adult human spinal cord ependymal region, we followed three approaches: (i) with MRI, we estimated the central canal patency in 59 control subjects, 99 patients with traumatic spinal cord injury, and 26 patients with non-traumatic spinal cord injuries.
View Article and Find Full Text PDFUnder inflammatory conditions, interleukin-1β (IL-1β) modulates neural stem cells at neurogenic niches. Here we show that spinal cord injury in rats increases IL-1β expression in astrocytes located around the spinal cord ependyma, a region that also holds a neurogenic potential. IL-1β increases from day 1 after lesion, reaches maximal levels between days 3 and 7, and declines from 14 days to low levels after 28 days.
View Article and Find Full Text PDFProgesterone is an anti-inflammatory and promyelinating agent after spinal cord injury, but its effectiveness on functional recovery is still controversial. In the current study, we tested the effects of chronic progesterone administration on tissue preservation and functional recovery in a clinically relevant model of spinal cord lesion (thoracic contusion). Using magnetic resonance imaging, we observed that progesterone reduced both volume and rostrocaudal extension of the lesion at 60 days post-injury.
View Article and Find Full Text PDFSpinal cord injury (SCI) induces a cascade of processes that may further expand the damage (secondary injury) or, alternatively, may be part of a safeguard response. Here we show that after a moderate-severe contusive SCI in rats there is a significant and very early increase in the spinal cord content of the endocannabinoids 2-arachidonoylglycerol (2-AG) and arachidonoyl ethanolamide (anandamide, AEA). Since 2-AG and AEA act through CB1 and CB2 cannabinoid receptors, we administered at 20 minutes after lesion a single injection of their respective antagonists AM281 and AM630 alone or in combination to block the effects of this early endocannabinoid accumulation.
View Article and Find Full Text PDFThe cells surrounding the central canal of the spinal cord are a source of stem/precursor cells that may give rise to neurons, astrocytes, or oligodendrocytes. However, they are a heterogeneous population that remains poorly understood. Here we describe a subpopulation characterized by their strong expression of the CB(1) cannabinoid receptor, oval/round soma, apical nucleus, a variable number of cilia (0, 1, or 2), and the presence of a single short and occasionally ramified basal process.
View Article and Find Full Text PDF