Publications by authors named "Panhong Yuan"

The CRISPR-based regulation tools enable fine-tuning of gene transcription, showing potential in areas of biomanufacturing and live therapeutics. However, the cell toxicity and PAM specificity of existing CRISPR-based regulation systems limit their broad application. The development of new and less-toxic CRISPR-controlled expression systems remains highly desirable for expanding the application scope of CRISPR-based tools.

View Article and Find Full Text PDF

Considered a "Generally Recognized As Safe" (GRAS) bacterium, the plant growth-promoting rhizobacterium has been widely applied in: agriculture, medicine, industry, and environmental remediation. species not only accelerate plant growth and degrade toxic substances in wastewater and soil but also produce industrially-relevant enzymes and antimicrobial peptides. Due to a lack of genetic manipulation tools and methods, exploitation of the bioresources of naturally isolated species has long been limited.

View Article and Find Full Text PDF

In response to a high concentration of glucose, , a microbial chassis for producing many industrial metabolites, rapidly takes up glucose using the phosphotransferase system (PTS), leading to overflow metabolism, a common phenomenon observed in many bacteria. Although overflow metabolism affects cell growth and reduces the production of many metabolites, effective strategies that reduce overflow metabolism while maintaining normal cell growth remain to be developed. Here, we used a quorum sensing (QS)-mediated circuit to tune the glucose uptake rate and thereby relieve overflow metabolism in an engineered for producing d-pantothenic acid (DPA).

View Article and Find Full Text PDF

β-alanine has been used in food and pharmaceutical industries. Although Escherichia coli Nissle 1917 (EcN) is generally considered safe and engineered as living therapeutics, engineering EcN for producing industrial metabolites has rarely been explored. Here, by protein and metabolic engineering, EcN was engineered for producing β-alanine from glucose.

View Article and Find Full Text PDF

Considered a "Generally Recognized As Safe" (GRAS) bacterium, the plant growth-promoting rhizobacterium has been widely applied in agriculture and animal husbandry. It also produces valuable compounds that are used in medicine and industry. Our previous work showed the presence of restriction modification (RM) system in ATCC 842.

View Article and Find Full Text PDF

Menaquinone-4 (MK-4) plays a significant role in bone health and cardiovascular therapy. Although many strategies have been adopted to increase the yield of MK-4 in Bacillus subtilis 168, the effectiveness of MK-4 is still low due to the inherent limitations of metabolic pathways. However, dynamic regulation based on quorum sensing (QS) has been extensively applied as a fundamental tool for fine-tuning gene expression in reaction to changes in cell density without adding expensive inducers.

View Article and Find Full Text PDF

Menaquinone-4 (MK-4), one form of vitamin K, plays an important role in cardiovascular and bone health. Menaquinone-4 (MK-4) is a valuable vitamin K2 that is difficult to synthesize organically, and now is mainly produced by microbial fermentation. Herein we significantly improved the synthesis efficiency of MK-4 by combinatorial pathway engineering in Bacillus subtilis 168, a model industrial strain widely used for production of nutraceuticals.

View Article and Find Full Text PDF

Fat-soluble vitamins are vitamins that are insoluble in water, soluble in fat, and organic solvents; they are found in minute amount in various foods. Fat-soluble vitamins, including vitamins A, D, E, and K, have been widely used in food, cosmetics, health care products, and pharmaceutical industries. Fat-soluble vitamins are currently produced via biological and chemical synthesis.

View Article and Find Full Text PDF

Hyaluronan oligosaccharides (o-HAs), especially saturated o-HAs, have attracted intensive attention due to their potential applications in medical treatments. In this study, the hydrolysis process of leech hyaluronidase (LHase) towards the hyaluronan was investigated by HPLC and HPLC/ESI-MS. The proportions of hyaluronan tetrasaccharide (HA4) with hexasaccharide (HA6), end products, were illustrated to have a relationship with the amount of LHase.

View Article and Find Full Text PDF

Chondroitin and heparosan, important polysaccharides and key precursors of chondroitin sulfate and heparin/heparan sulfate, have drawn much attention due to their wide applications in many aspects. In this study, we designed two independent synthetic pathways of chondroitin and heparosan in food-grade Bacillus subtilis, integrating critical synthases genes derived from Escherichia coli into B. subtilis genome.

View Article and Find Full Text PDF

Low-molecular-weight hyaluronan (LMW-HA) has attracted much attention because of its many potential applications. Here, we efficiently produced specific LMW-HAs from sucrose in Bacillus subtilis. By coexpressing the identified committed genes (tuaD, gtaB, glmU, glmM, and glmS) and downregulating the glycolytic pathway, HA production was significantly increased from 1.

View Article and Find Full Text PDF

High-molecular-mass hyaluronan (HA) was controllably depolymerized in pure aqueous solution with recombinant leech hyaluronidase (HAase). The HAase concentration per unit HA and hydrolysis time played important roles in molecular mass distribution. By modulating the concentrations of HAase and controlling the hydrolysis time, any molar-mass-defined HA oligomers could be efficiently and specifically produced on a large scale (40 g/L), such as HA oligosaccharides with weight-average molar mass of 4000, 10,000, and 30,000Da and end hydrolysates containing only HA6 and HA4.

View Article and Find Full Text PDF