Itch is an unpleasant sensation that often accompanies chronic dermatological conditions. Although many of the itch receptors and the neural pathways underlying this sensation are known, the identity of endogenous ligands is still not fully appreciated. Using an unbiased bioinformatic approach, we identified GPR15L as a candidate pruritogen whose expression is robustly up-regulated in psoriasis and atopic dermatitis.
View Article and Find Full Text PDFChronic itch is a major symptom of many inflammatory skin diseases. This type of pruritus is thought to be facilitated by cytokines that activate cutaneous nerve fibers; however, the molecular components and mechanisms involved are poorly understood. We found that the cytokine oncostatin M (OSM) is highly up-regulated in psoriasis, atopic dermatitis, and cutaneous T cell lymphoma, diseases associated with chronic itch.
View Article and Find Full Text PDFThis review focuses on recent advances in understanding the mechanisms involved in itch signaling in the skin and how these new findings fit into the wider picture of the expression of itch mediators and their receptors in the dermal layer. Because at present studies mostly concentrate on single cellular compartments (e.g.
View Article and Find Full Text PDFJ Invest Dermatol
March 2022
Pruritus is a common symptom of dermatological disorders and has a major negative impact on QOL. Previously, it was suggested that human β-defensin peptides elicit itch through the activation of mast cells. In this study, we investigated in more detail the mechanisms by which β-defensins induce itch by defining the receptors activated by these peptides in humans and mice, by establishing their action in vivo, and by examining their expression in inflammatory dermal diseases.
View Article and Find Full Text PDFThe opioid peptides and their receptors have been linked to multiple key biological processes in the nervous system. Here we review the functions of the kappa opioid receptor (KOR) and its endogenous agonists dynorphins (Goldstein A, Tachibana S, Lowney LI, Hunkapiller M, Hood L, Proc Natl Acad Sci U S A 76:6666-6670, 1979) in modulating itch and pain (nociception). Specifically, we discuss their roles relative to recent findings that tell us more about the cells and circuits which are impacted by this opioid and its receptor and present reanalysis of single-cell sequencing data showing the expression profiles of these molecules.
View Article and Find Full Text PDFCutaneous wound healing is associated with the unpleasant sensation of itching. Here we investigated the mechanisms underlying this type of itch, focusing on the contribution of soluble factors released during healing. We found high amounts of interleukin 31 (IL-31) in skin wound tissue during the peak of itch responses.
View Article and Find Full Text PDFThe L-type Ca channel Ca 1.2 governs gene expression, cardiac contraction, and neuronal activity. Binding of α-actinin to the IQ motif of Ca 1.
View Article and Find Full Text PDFIn this study, we sought to elucidate the molecular mechanism underlying human Mas-related G protein-coupled receptor X1 (MrgprX1) mediated itch sensation. We found that activation of MrgprX1 by BAM8-22 triggered robust action potential discharges in dorsal root ganglion (DRG) neurons. This neuronal excitability is not mediated by Transient receptor potential (TRP) cation channels, M-type potassium channels, or chloride channels.
View Article and Find Full Text PDFItch is an unpleasant skin sensation that can be triggered by exposure to many chemicals, including those released by mast cells. The natriuretic polypeptide b (Nppb)-expressing class of sensory neurons, when activated, elicits scratching responses in mice, but it is unclear which itch-inducing agents stimulate these cells and the receptors involved. Here, we identify receptors expressed by Nppb neurons and demonstrate the functional importance of these receptors as sensors of endogenous pruritogens released by mast cells.
View Article and Find Full Text PDFIn the version of this article initially published online, the labels were switched for the right-hand pair of bars in Fig. 4e. The left one of the two should be Chloroquine + veh, the right one Chloroquine + CNO.
View Article and Find Full Text PDFStimuli that elicit itch are detected by sensory neurons that innervate the skin. This information is processed by the spinal cord; however, the way in which this occurs is still poorly understood. Here we investigated the neuronal pathways for itch neurotransmission, particularly the contribution of the neuropeptide somatostatin.
View Article and Find Full Text PDFThe voltage-gated L-type Ca channel Ca1.2 is crucial for initiating heartbeat and control of a number of neuronal functions such as neuronal excitability and long-term potentiation. Mutations of Ca1.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2017
Human Mas-related G protein-coupled receptor X1 (MRGPRX1) is a promising target for pain inhibition, mainly because of its restricted expression in nociceptors within the peripheral nervous system. However, constrained by species differences across , drug candidates that activate MRGPRX1 do not activate rodent receptors, leaving no responsive animal model to test the effect on pain in vivo. Here, we generated a transgenic mouse line in which we replaced mouse with human This humanized mouse allowed us to characterize an agonist [bovine adrenal medulla 8-22 (BAM8-22)] and a positive allosteric modulator (PAM), ML382, of MRGPRX1.
View Article and Find Full Text PDFPrevious studies have shown that the activation of mouse MrgC11, a G-protein-coupled receptor, by its peptide ligand BAM8-22 can inhibit chronic pain. A large-scale screen has been carried out to isolate small-molecule allosteric agonists of MrgX1, the human homologue of MrgC11. The goal of this study is to improve the efficacy and potency of positive allosteric modulators (PAMs) with therapeutic implications in combating chronic pain.
View Article and Find Full Text PDFRegulation of neuronal excitability and cardiac excitation-contraction coupling requires the proper localization of L-type Ca²⁺ channels. We show that the actin-binding protein α-actinin binds to the C-terminal surface targeting motif of α11.2, the central pore-forming Ca(V)1.
View Article and Find Full Text PDFMyotonia congenita-inducing mutations in the muscle chloride channel CLC-1 normally result in reduced open probability (P (o)) of this channel. One well-accepted mechanism of the dominant inheritance of this disease involves a dominant-negative effect of the mutation on the function of the common-gate of this homodimeric, double-barreled molecule. We report here a family with myotonia congenita characterized by muscle stiffness and clinical and electrophysiologic myotonic phenomena transmitted in an autosomal dominant pattern.
View Article and Find Full Text PDFThe common gating of CLC-1 has been shown to be inhibited by intracellular adenosine triphosphate (ATP) in acidic pH conditions. Such modulation is thought to be mediated by direct binding of ATP to the cystathionine β-synthase (CBS) domains at the C-terminal cytoplasmic region of CLC-1. Guided by the crystal structure of the C-terminal domain of CLC-5, we constructed a homology model of CLC-1's C terminus and mutated critical amino acid residues lining the potential ATP-binding site.
View Article and Find Full Text PDFThe blockade of CLC-0 chloride channels by p-chlorophenoxy acetate (CPA) has been thought to be state dependent; the conformational change of the channel pore during the "fast gating" alters the CPA binding affinity. Here, we examine the mechanism of CPA blocking in pore-open mutants of CLC-0 in which the residue E166 was replaced by various amino acids. We find that the CPA-blocking affinities depend upon the volume and the hydrophobicity of the side chain of the introduced residue; CPA affinity can vary by three orders of magnitude in these mutants.
View Article and Find Full Text PDFThe effect of intracellular adenosine triphosphate (ATP) on the "common gating" of the CLC-1 chloride channel has been studied by several laboratories with controversial results. Our previous study on the channel expressed in Xenopus oocytes using excised inside-out patch-clamp methods showed a robust effect of ATP in shifting the open probability curve of the common gate toward more depolarizing voltages (Tseng, P.Y.
View Article and Find Full Text PDFThe CLC-1 Cl(-) channel is abundantly expressed on the plasma membrane of muscle cells, and the membrane potential of muscle cells is largely controlled by the activity of this Cl(-) channel. Previous studies showed that low intracellular pH increases the overall open probability of recombinant CLC-1 channels in various expression systems. Low intracellular pH, however, is known to inhibit the Cl(-) conductance on the native muscle membrane, contradicting the findings from the recombinant CLC-1 channels in expressed systems.
View Article and Find Full Text PDFIt is well recognized that bone marrow stromal cells (MSCs) can differentiate into neuron-like cells when supplemented with growth factors and/or chemical treatments. We demonstrated that primary MSCs obtained from adult rats could spontaneously differentiate into neural precursor cells after long-term culture. During the outset of in vitro culture, less than 0.
View Article and Find Full Text PDF