Publications by authors named "Panettieri R"

Histone deacetylase (HDAC) inhibitors may offer novel approaches in the treatment of asthma. We postulate that trichostatin A (TSA), a Class 1 and 2 inhibitor of HDAC, inhibits airway hyperresponsiveness in antigen-challenged mice. Mice were sensitized and challenged with Aspergillus fumigatus antigen (AF) and treated with TSA, dexamethasone, or vehicle.

View Article and Find Full Text PDF

Severe asthma is associated with fixed airway obstruction attributable to inflammation, copious luminal mucus, and increased airway smooth muscle (ASM) mass. Paradoxically, studies demonstrated that the hypertrophic and hyperplastic ASM characteristic of severe asthma has reduced contractile capacity. We compared the G-protein-coupled receptor (GPCR)-induced Ca(2+) mobilization and expression of GPCRs and signaling proteins related to procontractile signaling in ASM derived postmortem from subjects who died of nonrespiratory causes, with cells from subjects who died of asthma.

View Article and Find Full Text PDF

The β2-adrenergic receptor (β2AR) plays important physiological roles in the heart and lung and is the primary target of β-agonists, the mainstay asthma drugs. Activation of β2AR by β-agonists is attenuated by receptor down-regulation, which ensures transient stimulation of the receptor but reduces the efficacy of β-agonists. Here we report the identification, through a functional genome-wide RNA interference (RNAi) screen, of new genes critically involved in β2AR down-regulation.

View Article and Find Full Text PDF

In severe asthma, bronchodilator- and steroid-insensitive airflow obstruction develops through unknown mechanisms characterized by increased lung airway smooth muscle (ASM) mass and stiffness. We explored the role of a Regulator of G-protein Signaling protein (RGS4) in the ASM hyperplasia and reduced contractile capacity characteristic of advanced asthma. Using immunocytochemical staining, ASM expression of RGS4 was determined in endobronchial biopsies from healthy subjects and those from subjects with mild, moderate and severe asthma.

View Article and Find Full Text PDF

Severe asthma manifests as airway remodeling and irreversible airway obstruction, in part because of the proliferation and migration of human airway smooth muscle (HASM) cells. We previously reported that cyclic adenosine monophosphate-mobilizing agents, including β(2)-adrenergic receptor (β(2)AR) agonists, which are mainstay of asthma therapy, and prostaglandin E2 (PGE2), inhibit the migration of HASM cells, although the mechanism for this migration remains unknown. Vasodilator-stimulated phosphoprotein (VASP), an anticapping protein, modulates the formation of actin stress fibers during cell motility, and is negatively regulated by protein kinase A (PKA)-specific inhibitory phosphorylation at serine 157 (Ser157).

View Article and Find Full Text PDF

Atopic asthma is poorly controlled by current therapies. Newer therapies and novel antihistamines are, therefore, required to treat patients whose atopic asthma is not controlled. For the first time, C-027 is shown to antagonize histamine, IgE-mediated and serotonin-induced contraction in human airways and vessels.

View Article and Find Full Text PDF

Background And Purpose: Previous studies have linked a reduction in pH in airway, caused by either environmental factors, microaspiration of gastric acid or inflammation, with airway smooth muscle (ASM) contraction and increased airway resistance. Neural mechanisms have been shown to mediate airway contraction in response to reductions in airway pH to < 6.5; whether reduced extracellular pH (pHo) has direct effects on ASM is unknown.

View Article and Find Full Text PDF

The endoplasmic reticulum Ca(2+)-sensing STIM proteins mediate Ca(2+) entry signals by coupling to activate plasma membrane Orai channels. We reveal that STIM-Orai coupling is rapidly blocked by hypoxia and the ensuing decrease in cytosolic pH. In smooth muscle cells or HEK293 cells coexpressing STIM1 and Orai1, acute hypoxic conditions rapidly blocked store-operated Ca(2+) entry and the Orai1-mediated Ca(2+) release-activated Ca(2+) current (I(CRAC)).

View Article and Find Full Text PDF

Airway smooth muscle (ASM) manifests a hyper-responsive phenotype in airway disorders such as asthma. ASM also modulates immune responses by secreting mediators and expressing cell-surface molecules that promote recruitment of inflammatory cells to the lungs. The aim of the current article is to highlight therapeutics that may modulate ASM responses in airway disorders and exacerbations.

View Article and Find Full Text PDF

Bronchodilators provide the mainstay of pharmacologic therapy for chronic obstructive pulmonary disease (COPD), and anticholinergic bronchodilators, in particular, appear to be the most effective. There are currently two anticholinergic agents available in the US for the treatment of COPD (ipratropium bromide and tiotropium bromide), but several others are in various stages of development. Aclidinium bromide, a novel, long-acting, anticholinergic bronchodilator, is currently in Phase III trials for the management of COPD.

View Article and Find Full Text PDF

Dopamine receptors are G protein-coupled receptors that are divided into two subgroups, "D(1)-like" receptors (D(1) and D(5)) that couple to the G(s) protein and "D(2)-like" receptors (D(2), D(3), and D(4)) that couple to G(i). Although inhaled dopamine has been reported to induce bronchodilation in patients with asthma, functional expression of dopamine receptor subtypes has never been described on airway smooth muscle (ASM) cells. Acute activation of G(i)-coupled receptors inhibits adenylyl cyclase activity and cAMP synthesis, which classically impairs ASM relaxation.

View Article and Find Full Text PDF

γ-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the mammalian central nervous system, and exerts its actions via both ionotropic (GABA(A)) and metabotropic (GABA(B)) receptors. Although the functional expression of GABA(B) receptors coupled to the G(i) protein was reported for airway smooth muscle, the role of GABA(B) receptors in airway responsiveness remains unclear. We investigated whether G(i)-coupled GABA(B) receptors cross-regulate phospholipase C (PLC), an enzyme classically regulated by G(q)-coupled receptors in human airway smooth muscle cells.

View Article and Find Full Text PDF

Inhaled dehydroepiandrosterone-3-sulfate (DHEAS), but not dehydroepiandrosterone (DHEA), possesses anti-inflammatory activity in in vitro assays and in models of allergen and lipopolysaccharide challenges. We postulated whether an inhaled suspension of DHEAS delivered via nebulizer would improve asthma control in moderate-to-severe asthma patients. We also characterized the safety profile of an inhaled suspension of DHEAS.

View Article and Find Full Text PDF

Airway smooth muscle (ASM) manifests a hyperresponsive phenotype in airway disorders such as asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis. Current evidence also suggests that ASM modulates immune responses by secreting mediators and expressing cell surface molecules. Such processes amplify or dampen inflammation by inflammatory cells in the airways or by altering cellular responses to viruses, bacteria, or pathogens known to exacerbate airways diseases.

View Article and Find Full Text PDF

Incomplete combustion produces a pollutant mixture that includes polycyclic aromatic hydrocarbons (PAHs). Previous work by the Columbia Center for Children's Environmental Health (CCCEH) and others linked exposure to PAH with symptoms of asthma and other adverse health effects in young children. Inhaled β(2)-adrenergic agonists are mainstays in the treatment of reactive airway diseases.

View Article and Find Full Text PDF

Background And Purpose: Steroids prevent and reverse salbutamol-induced β(2)-adrenoceptor tolerance in human small airways. This study examines the effects of the long-acting β(2) agonists (LABAs) formoterol and salmeterol, and the ability of budesonide to prevent desensitization.

Experimental Approach: Long-acting β(2) agonists in the presence and absence of budesonide were incubated with human precision-cut lung slices containing small airways.

View Article and Find Full Text PDF

Although short-acting and long-acting inhaled β(2)-adrenergic receptor agonists (SABA and LABA, respectively) relieve asthma symptoms, use of either agent alone without concomitant anti-inflammatory drugs (corticosteroids) may increase the risk of disease exacerbation in some patients. We found previously that pretreatment of human precision-cut lung slices (PCLS) with SABA impaired subsequent β(2)-agonist-induced bronchodilation, which occurred independently of changes in receptor quantities. Here we provide evidence that prolonged exposure of cultured human airway smooth muscle (HuASM) cells to β(2)-agonists directly augments procontractile signaling pathways elicited by several compounds including thrombin, bradykinin, and histamine.

View Article and Find Full Text PDF

Glucocorticoids (GCs), which activate GC receptor (GR) signaling and thus modulate gene expression, are widely used to treat asthma. GCs exert their therapeutic effects in part through modulating airway smooth muscle (ASM) structure and function. However, the effects of genes that are regulated by GCs on airway function are not fully understood.

View Article and Find Full Text PDF

In addition to hyperresponsiveness in asthma, airway smooth muscle (ASM) also manifests an inflammatory phenotype characterized by augmented expression of mediators that enhance inflammation, contribute to tissue remodelling and augment leucocyte trafficking and activity. Our present review summarizes contemporary understanding of ASM-derived mediators and their paracrine and autocrine actions in airway diseases.

View Article and Find Full Text PDF

γ-Amino butyric acid (GABA) is a primary inhibitory neurotransmitter in the central nervous system, and is classically released by fusion of synaptic vesicles with the plasma membrane or by egress via GABA transporters (GATs). Recently, a GABAergic system comprised of GABA(A) and GABA(B) receptors has been identified on airway epithelial and smooth muscle cells that regulate mucus secretion and contractile tone of airway smooth muscle (ASM). In addition, the enzyme that synthesizes GABA, glutamic acid decarboxylase, has been identified in airway epithelial cells; however, the mechanism(s) by which this synthesized GABA is released from epithelial intracellular stores is unknown.

View Article and Find Full Text PDF

Airway smooth muscle (ASM) cells have been reported to contribute to the inflammation of asthma. Because the thiazolidinediones (TZDs) exert anti-inflammatory effects, we examined the effects of troglitazone and rosiglitazone on the release of inflammatory moieties from cultured human ASM cells. Troglitazone dose-dependently reduced the IL-1β-induced release of IL-6 and vascular endothelial growth factor, the TNF-α-induced release of eotaxin and regulated on activation, normal T expressed and secreted (RANTES), and the IL-4-induced release of eotaxin.

View Article and Find Full Text PDF

Airway hyperresponsiveness and inflammation characterize the airways of individuals with asthma and chronic obstructive pulmonary disease (COPD). Hence, therapeutic approaches that attenuate such manifestations may offer promise in the management of these diseases. In the present study, we investigated whether a novel long-acting cholinergic antagonist, aclidinium bromide, modulates airway function and leukocyte trafficking in an Aspergillus fumigatus (Af)-induced murine model of asthma.

View Article and Find Full Text PDF

Inhaled β-agonists are effective airway smooth muscle (ASM)-relaxing agents that help reverse bronchoconstriction in asthma, but their ability to affect the aberrant ASM growth that also occurs with asthma is poorly understood. β-Agonists exhibit PKA-dependent antimitogenic effects in several cell types. However, recent studies suggest that Epac, and not PKA, mediates the antimitogenic effect of cAMP in both ASM and fibroblasts.

View Article and Find Full Text PDF