Aging-related muscle atrophy/sarcopenia is the most common type of muscle impairment that affects the quality of life. In the current study, we examined the effect of a functional food mixture of amla, turmeric, black pepper, cinnamon, and ginger on D-galactose-induced muscle alterations in rats. Wistar rats were randomly divided into three groups: Control (C), D-galactose (G), and D-galactose + functional food mixture intervention (G + I).
View Article and Find Full Text PDFZinc (Zn) deficiency has many adverse effects, including growth retardation, loss of appetite, vascular diseases, cognitive and memory impairment, and neurodegenerative diseases. In the current study, we investigated the hypothesis that dietary Zn inadequacy affects neurotrophic factors and proteostasis in the brain. Three-week-old Wistar/Kyoto male rats were fed either a Zn-deficient diet (D; < 1 mg Zn/kg diet; n = 18) or pair-fed with the control diet (C; 48 mg Zn/kg diet; n = 9) for 4 weeks.
View Article and Find Full Text PDFSeveral human epidemiological and animal studies suggest that a maternal low-protein (MLP) diet affects skeletal muscle (SM) health in the offspring. However, effect of combined prenatal to postnatal protein restriction (chronic PR) and prenatal to perinatal protein restriction (PR) with postnatal rehabilitation maternal protein restriction (MPR) on protein quality control (PQC) processes and proteolysis in the offspring remains poorly understood. The current study explored the impact of chronic PR and MPR on SM protein degradation rates, chaperones, unfolded protein response (UPR), ubiquitin-proteasome system (UPS), autophagy, and apoptosis, in the adult offspring.
View Article and Find Full Text PDFTomato ( L.) is an important vegetable and nutritious crop plant worldwide. They are rich sources of several indispensable compounds such as lycopene, minerals, vitamins, carotenoids, essential amino acids, and bioactive polyphenols.
View Article and Find Full Text PDFNutrients
November 2021
Several studies suggest that the maternal protein content and source can affect the offspring's health. However, the chronic impact of maternal quality and quantity protein restriction, and reversible changes upon rehabilitation, if any, in the offspring, remains elusive. This study examined the effects of maternal low-quality protein (LQP) and low-protein (LP) intake from preconception to post-weaning, followed by rehabilitation from weaning, on body composition, glucose-homeostasis, and metabolic factors in rat offspring.
View Article and Find Full Text PDF