Ubiquitin-specific proteases (USPs) are a family of multi-domain deubiquitinases (DUBs) with variable architectures, some containing regulatory auxiliary domains. Among the USP family, all occurrences of intramolecular regulation presently known are autoactivating. USP8 remains the sole exception as its putative WW-like domain, conserved only in vertebrate orthologs, is autoinhibitory.
View Article and Find Full Text PDFRibonucleoprotein granules are bio-condensates that form a diverse group of dynamic membrane-less organelles implicated in several cellular functions, including stress response and cellular survival. In , a type of bio-condensates referred to as stress granules (SGs) are formed prior to the parasites' egress from the host cell and are implicated in the survival and invasion competency of extracellular tachyzoites. We used paraformaldehyde to fix and cross-link SG proteins to allow purification by centrifugation and analysis by mass spectrometry.
View Article and Find Full Text PDFYeast VH1-related phosphatase (YVH1) (also known as DUSP12) is a member of the atypical dual-specificity phosphatase subfamily. Although no direct substrate has been firmly established, human YVH1 (hYVH1) has been shown to protect cells from cellular stressors, regulate the cell cycle, disassemble stress granules, and act as a 60S ribosome biogenesis factor. Despite knowledge of hYVH1 function, further research is needed to uncover mechanisms of its regulation.
View Article and Find Full Text PDFSpinal muscular atrophy (SMA) is an autosomal recessive disorder that represents a significant cause of infant mortality. SMA is characterized by reduced levels of the Survival Motor Neuron protein leading to the loss of alpha motor neurons in the spinal cord and brain stem as well as defects in peripheral tissues such as skeletal muscle and liver. With progress in promising therapies such as antisense oligonucleotide and gene replacement, there remains a need to better understand disease subtypes and develop biomarkers for improved diagnostics and therapeutic monitoring.
View Article and Find Full Text PDFThe transcriptional co-activator with the PDZ binding motif (TAZ) is a critical regulator of numerous cellular processes such as cell differentiation, development, proliferation, and cell growth. Aberrant expression and activity of TAZ are also featured in many human malignancies. A hallmark of TAZ biology is its cytoplasmic retention mediated by 14-3-3 isoforms in response to phosphorylation of Ser by members of the LATS family of kinases.
View Article and Find Full Text PDFSpinal muscular atrophy (SMA) is a human genetic disorder characterized by muscle weakness, muscle atrophy, and death of motor neurons. SMA is caused by mutations or deletions in a gene called (). is a housekeeping gene, but the most prominent pathologies in SMA are atrophy of myofibers and death of motor neurons.
View Article and Find Full Text PDFDaphnia pulex is a keystone species for aquatic habitats and an ecological/evolution model organism. Although significant progress has been made on characterizing its genome, the D. pulex proteome remains largely uncharacterized partially due to abnormally high protein degradation during homogenization and emphasis on genomic analysis.
View Article and Find Full Text PDFUnlabelled: Chinook salmon (Oncorhynchus tshawytscha) are external fertilizers that display sneak-guard alternative reproductive tactics. The larger hooknose males dominate mating positions, while the smaller jack males utilize sneak tactics to achieve fertilization. Although poorly understood, previous studies have suggested that differences in spermatozoa quality may play a critical role in sperm competition.
View Article and Find Full Text PDFHuman YVH1 (hYVH1), also known as dual specificity phosphatase 12 (DUSP12), is a poorly characterized atypical dual specificity phosphatase widely conserved throughout evolution. Recent findings have demonstrated that hYVH1 expression affects cellular DNA content and is a novel cell survival phosphatase preventing both thermal and oxidative stress-induced cell death, whereas studies in yeast have established YVH1 as a novel 60S ribosome biogenesis factor. In this study, we have isolated novel hYVH1-associating proteins from human U2OS osteosarcoma cells using affinity chromatography coupled to mass spectrometry employing ion mobility separation.
View Article and Find Full Text PDFReceptor-mediated endocytosis 8 (RME-8) is a DnaJ domain containing protein implicated in translocation of Hsc70 to early endosomes for clathrin removal during retrograde transport. Previously, we have demonstrated that RME-8 associates with early endosomes in a phosphatidylinositol 3-phosphate (PI(3)P)-dependent fashion. In this study, we have now identified amino acid determinants required for PI(3)P binding within a region predicted to adopt a pleckstrin homology-like fold in the N terminus of RME-8.
View Article and Find Full Text PDFA central feature of the protein tyrosine phosphatase (PTP) catalytic mechanism is an attack of the substrate's phosphate moiety by a thiolate ion in the signature CX5R motif. In addition to being an effective nucleophile in this form, the thiolate ion is also susceptible to reversible redox regulation. This attribute permits temporal inhibition of PTP activities, which affects numerous cellular processes utilizing kinase-mediated signal propagation.
View Article and Find Full Text PDFMyotubularin-related 2 (MTMR2) is a 3-phosphoinositide lipid phosphatase with specificity towards the D-3 position of phosphoinositol 3-phosphate [PI(3)P] and phosphoinositol 3,5-bisphosphate lipids enriched on endosomal structures. Recently, we have shown that phosphorylation of MTMR2 on Ser58 is responsible for its cytoplasmic sequestration and that a phosphorylation-deficient variant (S58A) targets MTMR2 to Rab5-positive endosomes resulting in PI(3)P depletion and an increase in endosomal signaling, including a significant increase in ERK1/2 activation. Using in vitro kinase assays, cellular MAPK inhibitors, siRNA knockdown and a phosphospecific-Ser58 antibody, we now provide evidence that ERK1/2 is the kinase responsible for phosphorylating MTMR2 at position Ser58, which suggests that the endosomal targeting of MTMR2 is regulated through an ERK1/2 negative feedback mechanism.
View Article and Find Full Text PDFThe dual-specificity phosphatase hYVH1 (DUSP12) is an evolutionary conserved phosphatase that also contains a unique zinc-binding domain. Recent evidence suggests that this enzyme plays a role in cell survival and ribosome biogenesis. Here, we report that hYVH1 expression also affects cell cycle progression.
View Article and Find Full Text PDFMyotubularin related protein 2 (MTMR2) is a member of the myotubularin family of phosphoinositide lipid phosphatases. Although MTMR2 dephosphorylates the phosphoinositides PI(3)P and PI(3,5)P2, the phosphoinositide binding proteins that are regulated by MTMR2 are poorly characterized. In this study, phosphoinositide affinity chromatography coupled to mass spectrometry identified receptor mediated endocytosis 8 (RME-8) as a novel PI(3)P binding protein.
View Article and Find Full Text PDFMTMR2 is a member of the myotubularin family of inositol lipid phosphatases, a large protein-tyrosine phosphatase subgroup that is conserved from yeast to humans. Furthermore, the peripheral neuromuscular disease Charcot-Marie Tooth disease type 4B has been attributed to mutations in the mtmr2 gene. Because the molecular mechanisms regulating MTMR2 have been poorly defined, we investigated whether reversible phosphorylation might regulate MTMR2 function.
View Article and Find Full Text PDFThe presence of late embryogenesis abundant (LEA) proteins in plants and animals has been linked to their ability to tolerate a variety of environmental stresses. Among animals, encysted embryos of the brine shrimp Artemia franciscana are among the most stress resistant eukaryotes, and for that reason it is considered to be an extremophile. The study presented here demonstrates that these embryos contain multiple group 1 LEA proteins with masses of 21, 19, 15.
View Article and Find Full Text PDFWe present a simple method by which gold nanoparticles (AuNPs) are used to simultaneously isolate and enrich for free or modified thiol-containing peptides, thus facilitating the identification of protein S-modification sites. Here, protein disulfide isomerase (PDI) and dual specificity phosphatase 12 (DUSP12 or hYVH1) were S-nitrosylated or S-glutathionylated, their free thiols differentially alkylated, and subjected to proteolysis. AuNPs were added to the digests, and the AuNP-bound peptides were isolated by centrifugation and released by thiol exchange.
View Article and Find Full Text PDFYVH1 was one of the first eukaryotic dual specificity phosphatases cloned, and orthologues poses a unique C-terminal zinc-coordinating domain in addition to a cysteine-based phosphatase domain. Our recent results revealed that human YVH1 (hYVH1) protects cells from oxidative stress. This function requires phosphatase activity and the zinc binding domain.
View Article and Find Full Text PDFLate embryogenesis abundant (LEA) proteins are hydrophilic molecules that are believed to function in desiccation and low-temperature tolerance in some plants and plant propagules, certain prokaryotes, and several animal species. The brine shrimp Artemia franciscana can produce encysted embryos (cysts) that enter diapause and are resistant to severe desiccation. This ability is based on biochemical adaptations, one of which appears to be the accumulation of the LEA protein that is the focus of this study.
View Article and Find Full Text PDFhYVH1 [human orthologue of YVH1 (yeast VH1-related phosphatase)] is an atypical dual-specificity phosphatase that is widely conserved throughout evolution. Deletion studies in yeast have suggested a role for this phosphatase in regulating cell growth. However, the role of the human orthologue is unknown.
View Article and Find Full Text PDFRegulation of the redox state of protein disulfide isomerase (PDI) is critical for its various catalytic functions. Here we describe a procedure utilizing isotope-coded affinity tag (ICAT) technology and mass spectrometry that quantitates relative changes in the dynamic thiol and disulfide states of human PDI. Human PDI contains six cysteine residues, four present in two active sites within the a and a' domains, and two present in the b' domain.
View Article and Find Full Text PDFYersinia encodes a protein kinase, YpkA, which disrupts the actin cytoskeleton. Using an approach termed chemical genetics, we identified a 36-kDa substrate for YpkA in both J774 lysates and bovine brain cytosol. Mass spectrometry analysis identified this substrate as FLJ20113, an open reading frame that corresponds to otubain 1, a deubiquitinating enzyme implicated in immune cell clonal anergy.
View Article and Find Full Text PDFPDI (protein disulphide-isomerase) activity is generally monitored by insulin turbidity assay or scrambled RNase assay, both of which are performed by UV-visible spectroscopy. In this paper, we present a sensitive fluorimetric assay for continuous determination of disulphide reduction activity of PDI. This assay utilizes the pseudo-substrate diabz-GSSG [where diabz stands for di-(o-aminobenzoyl)], which is formed by the reaction of isatoic anhydride with the two free N-terminal amino groups of GSSG.
View Article and Find Full Text PDFThe myotubularin (MTM) family constitutes one of the most highly conserved protein-tyrosine phosphatase subfamilies in eukaryotes. MTM1, the archetypal member of this family, is mutated in X-linked myotubular myopathy, whereas mutations in the MTM-related (MTMR)2 gene cause the type 4B1 Charcot-Marie-Tooth disease, a severe hereditary motor and sensory neuropathy. In this study, we identified a protein that specifically interacts with MTMR2 but not MTM1.
View Article and Find Full Text PDFPathogenic Yersinia contain a virulence plasmid that encodes genes for intracellular effectors, which neutralize the host immune response. One effector, YopM, is necessary for Yersinia virulence, but its function in host cells is unknown. To identify potential cellular pathways affected by YopM, proteins that co-immunoprecipitate with YopM in mammalian cells were isolated and identified by mass spectrometry.
View Article and Find Full Text PDF