A characteristic feature of nondividing animal cells is the radial organization of microtubules (MTs), emanating from a single microtubule organizing center (MTOC). As generically these cells are not spherically symmetric, this raises the question of the influence of cell geometry on the orientational distribution of microtubules. We present a systematic study of this question in a simplified setting where MTs are nucleated from a single fixed MTOC in the center of an elliptical cell geometry.
View Article and Find Full Text PDFWe propose a minimal model for the spontaneous and persistent generation of polarity in a spherical cell based on dynamic microtubules and a single mobile molecular component. This component, dubbed the polarity factor, binds to microtubules nucleated from a centrosome located in the center of the cell, is subsequently delivered to the cell membrane, where it diffuses until it unbinds. The only feedback mechanism we impose is that the residence time of the microtubules at the membrane increases with the local density of the polarity factor.
View Article and Find Full Text PDFThe highly orientationally ordered cortical microtubule array in plant cells is a key component for cell growth and development. Recent experimental and computational work has shown that the anisotropic nucleation of new microtubules from pre-existing microtubules has a major effect on the alignment process. We formulate a theoretical model to investigate the role of the microtubule-bound nucleation on the self-organization of the dynamical cortical microtubules.
View Article and Find Full Text PDF